## Realizing enhanced cyclability of cactus-like NiCo<sub>2</sub>O<sub>4</sub> nanocrystals anode enabled by molecular layer deposition

Jia-Bin Fang, Qiang Ren, Chang Liu, Ji-An Chen, Di Wu, Ai-Dong Li\*

National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China

*Electronic mail: <u>adli@nju.edu.cn</u>* 



Figure S1. SEM images of bare CC (a) and cactus-like NiCo<sub>2</sub>O<sub>4</sub> flakes on CC (b).



Figure S2. SEM images of (a-c) bare  $NiCo_2O_4$  and (d-f)  $NiCo_2O_4$  ( $Al_2O_3$ /carbon with different magnifications.



Figure S3. (a, b) Low-magnification TEM images, (c-f) high-magnification TEM images of bare NiCo<sub>2</sub>O<sub>4</sub>.



Figure S4. XPS spectra of as-deposited and annealed alucone films on Si: (a) C 1s, (b) O 1s and (c) Al 2p.



Figure S5. A schematic of the possible reaction mechanism and subsequent pyrolysis for the TMA-fumaric acid film.



Figure S6. TEM images of (a) bare  $NiCo_2O_4$  and (b)  $NiCo_2O_4@Al_2O_3/carbon$  ultrasonic dispersion for 10 min in alcohol.



Figure S7. CV curves of bare  $NiCo_2O_4$  for the first three cycles at the scan rate of 0.1 mV s<sup>-1</sup>.



Figure S8. Charge/discharge curves for the 1st, 3rd and 5th cycles at 200 mA  $g^{-1}$  of bare NiCo<sub>2</sub>O<sub>4</sub> electrode.



Figure S9. Column view of rate performance of  $NiCo_2O_4@Al_2O_3/carbon$  and bare  $NiCo_2O_4$  electrodes.



Figure S10. Cycling performance of  $NiCo_2O_4$  ( $Al_2O_3$ /carbon electrode at 5 A g<sup>-1</sup>.



Figure S11. (a) SEM image for cycled  $NiCo_2O_4$  anode after 200 cycles; (b, c) SEM images and (d) corresponding EDS mapping of elemental F, C, P, Al, O, Ni, Co, and Li for the cycled  $NiCo_2O_4@Al_2O_3$ /carbon anode after 200 cycles.



Figure S12. (a, b) TEM images of NiCo<sub>2</sub>O<sub>4</sub>@Al<sub>2</sub>O<sub>3</sub>/carbon electrode after 200 charge/discharge cycles at 2 A g<sup>-1</sup>. The thickness of SEI layer is ~10 nm indicated by the upper arrow; (c) Distribution of NiCo<sub>2</sub>O<sub>4</sub> NCs size in NiCo<sub>2</sub>O<sub>4</sub>@Al<sub>2</sub>O<sub>3</sub>/carbon before and after cycling.

(a) 
$$\underset{CPE}{Rs}$$
  $\underset{CPE}{Rstr}$   $\underset{CPE}{Rstr}$   $\underset{CPE}{Rstr}$   $\underset{CPE}{Rstr}$   $\underset{CPE}{Rstr}$   $\underset{CPE1}{Rst}$   $\underset{CPE2}{Rstr}$ 

Figure S13. Equivalent electrical circuit diagram.



Figure S14. Electrochemical impedance spectra of (a) bare  $NiCo_2O_4$  and (b)  $NiCo_2O_4@Al_2O_3$ /carbon after the first cycle.



Figure S15. Kinetics analyses of electrochemical behavior: (a) CV profiles of  $NiCo_2O_4@Al_2O_3$ /carbon anode at various scan rates; (b) Relationship between the log (peak current) and log (scan rate); (c) Contribution ratios of capacitive and diffusion-controlled charge storage at different scan rates.

## Table S1

Comparison of Li-ion storage performances between recent reported NiCo2O4 based

| and a co and and one of the | anodes | and | this | work. |
|-----------------------------|--------|-----|------|-------|
|-----------------------------|--------|-----|------|-------|

| Anode material                                                             | Current density      | Cycle  | Reversible capacity | Dafa  |  |
|----------------------------------------------------------------------------|----------------------|--------|---------------------|-------|--|
|                                                                            | (A g <sup>-1</sup> ) | number | $(mAh g^{-1})$      | Kels. |  |
| NiCo <sub>2</sub> O <sub>4</sub> @N-doped carbon                           | 1                    | 1000   | 271.4               | [1]   |  |
| submicrospheres                                                            | I                    | 1000   | 371.4               | [1]   |  |
| NiCo <sub>2</sub> O <sub>4</sub> @ZIF-67/GO                                | 0.5                  | 80     | 1025                | [2]   |  |
|                                                                            | 2                    | 80     | 740                 |       |  |
| NiCo <sub>2</sub> O <sub>4</sub> @Ni-B composites                          | 0.5                  | 500    | 865                 | [3]   |  |
| NiCo <sub>2</sub> O <sub>4</sub> -holey graphene                           | 0.178                | 450    | 931.2               | [4]   |  |
| Fe <sub>2</sub> O <sub>3</sub> /NiCo <sub>2</sub> O <sub>4</sub> composite | 0.178                | 200    | 1528                | [5]   |  |
| NiCo <sub>2</sub> O <sub>4</sub> @MnO <sub>2</sub> composites              | 1                    | 100    | 841.9               | [6]   |  |
| Ni-NiCo <sub>2</sub> O <sub>4</sub> @ZnCo <sub>2</sub> O <sub>4</sub>      | 0.1                  | 70     | 1571.9              | [7]   |  |
|                                                                            | 1                    | 600    | 1097.5              |       |  |
| NiCo <sub>2</sub> O <sub>4</sub> /CNT                                      | 1                    | 200    | 1673                | [8]   |  |
| NiCo <sub>2</sub> O <sub>4</sub> @TiO <sub>2</sub>                         | 2                    | 800    | 749.74              | [9]   |  |
| PPC/NiCo <sub>2</sub> O <sub>4</sub>                                       | 2                    | 1100   | 363                 | [10]  |  |
| NiCo <sub>2</sub> O <sub>4</sub> @Al <sub>2</sub> O <sub>3</sub> /carbon   | 0.2                  | 150    | 1574                | This  |  |
|                                                                            | 2                    | 200    | 931.2               |       |  |
|                                                                            | 5                    | 500    | 280                 | WOLK  |  |

## References

- 1. D. K. Denis, Z. Wang, X. Sun, F. U. Zaman, J. Zhang, L. Hou, J. Li and C. Yuan, ACS applied materials & interfaces, 2019, 11, 32052-32061.
- Y. Kuang, C. Chen, K. Li, B. Hao, J. Ma, Y. Liao, H. Mao and F. Huo, *Nanoscale*, 2019, 11, 15166-15172.
- M. Li, Q. Zhou, C. Ren, N. Shen, Q. Chen, J. Zhao, C. Guo, L. Zhang and J. Li, *Nanoscale*, 2019, 11, 22550-22558.
- D. Yuan, Y. Dou, L. Xu, L. Yu, N. Cheng, Q. Xia, L. Hencz, J. Ma, S. X. Dou and S. Zhang, Journal of Materials Chemistry A, 2020, 8, 13443-13451.
- 5. J. Liu, Y. Ding, T. Han, J. Long, X. Pei, Y. Luo, W. Bao, X. Lin and H. Zhang, *Chemical communications*, 2020, **56**, 2618-2621.
- Z. Zhang, Y. Huang, J. Yan, C. Li, X. Chen and Y. Zhu, *Applied Surface Science*, 2019, 473, 266-274.
- 7. H. Xin, D. Li, L. Shi, M. Ji, Y. Lin, J. Yu, B. Yang, C. Li and C. Zhu, Chemical Engineering

Journal, 2018, 341, 601-609.

- 8. S.-K. Park, S. H. Yang and Y. C. Kang, *Chemical Engineering Journal*, 2018, **349**, 214-222.
- 9. P. Liu, Q. Ru, Z. Wang, B. Wang, Q. Guo, P. Zhang, X. Hou, S. Su and F. C.-C. Ling, *Chemical Engineering Journal*, 2018, **350**, 902-910.
- C. Zhang, Z. Xie, W. Yang, Y. Liang, D. Meng, X. He, P. Liang and Z. Zhang, *Journal Of Power Sources*, 2020, 451.