Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Fixation of atmospheric CO₂ as C1-feedstock by nickel(II) complexes

Sethuraman Muthuramalingam^a, Marappan Velusamy^b, and Ramasamy Mayilmurugan^{*,a}

^aBioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India. Email: <u>mayilmurugan.chem@mkuniversity.ac.in</u> ^bDepartment of Chemistry, North Eastern Hill University, Shillong 793022, India.

Table of Contents

Figure S1. ¹ H and ¹³ C NMR spectra for L1	6
Figure S2. ¹ H and ¹³ C NMR spectra for L2	7
Figure S3. ¹ H and ¹³ C NMR spectra for L3	8
Figure S4. ¹ H and ¹³ C NMR spectra for L4	9
Figure S5. Molecular structure of complex 1	10
Figure S6. Optimized structures of complex $2 - 4$.	10
Figure S7. Electronic spectra for 1 – 4	11
Figure S8. CV and DPV for $1 - 3$	12
Figure S9. CV and DPV for 4	13
Figure S10-S17. NMR spectra for cyclic carbonates	14
Figure S18. Temperature depended yield and selectivity of propylene carbonate	21
production by 4	
Figure S19. Influence of Et_3N in the CO_2 fixation reaction	22
Figure S20. Influence of H ₂ O in the CO ₂ fixation reaction	22
Figure S21. Electronic spectra for the reaction of 4 with O_2 and CO_2	23

Figure S22. Steric map for complexes 1 - 4	24
Figure S23. Electronic spectra for the reaction of 1 with CO_2	25
Figure S24. ESI-MS spectra of complexes 1a	25
Figure S25. FT-IR spectra of 1a – 4a	26
Figure S26. ESI-MS spectra of complexes 2a	27
Figure S27. Electronic spectral change of 2 with CO ₂	27
Figure S28. Kinetic behavior for 2 with CO_2	28
Figure S29. The reaction of 2a with epichlorohydrin	28
Figure S30. ESI-MS spectra of complexes 3a	29
Figure S31. Electronic spectral change of 3 with CO_2	29
Figure S32. ESI-MS spectra of complexes 4a	30
Figure S33. Electronic spectral change of 4 with CO ₂	30
Figure S34. Kinetic behavior for 4 with CO ₂	31
Figure S35. The reaction of 4a with epichlorohydrin	31
Figure S36. Electronic spectral change of complex 1, 1a and 1a + LiClO ₄	32
Figure S37. Electronic spectral change of complex 2, 2a and 2a + LiClO ₄	32
Figure S38. Electronic spectral change of complex 3, 3a and $3a + \text{LiClO}_4$	33
Figure S39. ESI-MS spectral correlation of 4 and recovered catalyst 4	34
Figure S40. Recyclability test for 4	35
Figure S41. ORTEP plot for 1a, 2a and 4a	36
Table S1. Bond distance and bond angle for 1	37
Table S2. Calculated bond distance and bond angle for 2 - 4 by DFT method	38
Table S3. The electronic spectral, redox data of the nickel(II) complexes andtheir CO_2 adducts	39
Table S4. Optimization of the reaction of propylene oxide with CO ₂ using 4	40
Table S5. Bond distance and bond angles for 1a and 2a	41
Table S6. Bond distance and bond angles for 4a	42
Table S7. Crystal data and structure refinement for 1, 1a, 2a, and 4a	43

Materials: Commercially available chemicals were used without further purification. 1methylhomopiperazine, Ni(ClO₄)₂·6H₂O, 2-quinolylchloride hydrochloride, 2-vinyl pyridine, 2picolylchloride hydrochloride, 2-chloromethyl-4-methoxy-3,5-dimethylpyridine hydrochloride, NaBPh₄, tetrabutylammonium perchlorate (TBAP), triethylamine, and chloroform-*d* were purchased from Aldrich chemicals. Sodium hydroxide, sodium hydrogen carbonate, sodium sulfate anhydrous, lithium perchlorate, acetic acid, silica gel, acetonitrile, chloroform, hexane, and toluene were purchased from Merck, India and used after appropriate distillation or purification.

Instrumentation. The NMR spectra were recorded on a 300 MHz Bruker. ESI-Mass spectra recorded using a Thermo LC-MS instrument. UV-vis spectra and kinetic data obtained using the Agilent diode array spectrometer (Agilent 8453). Elemental analyses carried out using a Heraeus Vario Elemental automatic analyzer. Cyclic Voltammetry (CV) performed using a three-electrode cell configuration (CHI, model 440). A platinum sphere (acetonitrile medium), platinum wire, and Ag(s)/Ag⁺ were used as working, auxiliary, and reference electrodes respectively. The Bu₄NClO₄ were used as supporting electrolyte in acetonitrile. The $E_{1/2}$ values were observed under identical conditions. GC-MS and GC analysis performed on Agilent 5977E GCMSD using HP-5 MS ultrainert (30 m × 250 μ m × 0.25 μ m) capillary column.

X-ray Crystal Structure Analysis. Single crystal X-ray diffraction measurements were performed on the Agilent Technologies Supernova-E CCD diffractometer. The suitable single crystal of 1, 1a, 2a, and 4a with suitable size were selected from the mother liquor and immersed in paraffin oil, then mounted on the tip of glass fibre. The structures were solved by direct methods using the program SHELXS-2013. Refinement and all further calculations were carried out using SHELXL-2013. The H-atoms were included in calculated positions and treated as riding atoms using the SHELXL default parameters. The non-H atoms were refined anisotropically, using weighted full-matrix least-squares on F^2 . CCDC 1975592, 1975593, 1975594, and 1975598 are containing the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via ww.ccdc.cam.ac.uk/data request/cif.

NMR data for Cyclic carbonates:

4-Methyl-1,3-dioxolan-2-one: ¹H NMR (300 MHz, CDCl₃): δ = 4.75-4.82 (m, 1H), 4.45-4.51 (m, 1H), 3.91-3.97 (m, 1H), 1.36 (d, *J* = 1.37 Hz, 3H) ppm. ¹³C NMR (300 MHz, CDCl₃): δ, 155.52, 74.08, 71.09, 19.60 ppm. GC-MS (*m/z*): 102.01.

4-Phenyl-1,3-dioxolan-2-one: ¹H NMR (300 MHz, CDCl₃): δ = 7.21-7.40 (m, 5H), 5.66-5.71 (t, *J* = 5.69 Hz, 1H), 4.78-4.83 (t, *J* = 4.81 Hz, 1H), 4.26-4.32 (t, *J* = 4.29 Hz, 1H) ppm. ¹³C NMR (300 MHz, CDCl₃): δ = 155.38, 136.23, 130.06, 129.57, 126.30, 78.43, 71.67 ppm. GC-MS (*m/z*): 164.10.

1,3-benzodioxolan-2-one: ¹H NMR (300 MHz, CDCl₃): $\delta = 4.64$ (m, 2H), 1.73 (m, 2H), 1.48 (m, 4H), 1.34 (m, 2H) ppm. ¹³C NMR (300 MHz, CDCl₃): $\delta = 155.82$, 76.21, 27.06, 24.45 ppm. GC-MS (*m/z*): 142.20.

4-(chloromethyl)-1,3-dioxolan-2-one: ¹H NMR (300 MHz, CDCl₃): $\delta = 5.01$ (m, 1H), 4.57-4.62 (t, J = 4.60 Hz, 1H), 4.43 (dd, J = 4.42 Hz, 1H), 3.79 (m, 2H). ¹³C NMR (300 MHz, CDCl₃): $\delta = 154.66$, 74.78, 67.38, 44.20 ppm. GC-MS (m/z): 135.90.

4-Butyl 1,3-dioxolan-2-one: ¹H NMR (300 MHz, CDCl₃): $\delta = 4.60-4.80$ (m, 1H), 4.46-4.49 (t, J = 4.47 Hz, 1H), 3.98 (m, 1H), 1.22-1.33 (m, 6H), 0.84 (t, J = 0.84 Hz, 3H) ppm. ¹³C NMR (300 MHz, CDCl₃): $\delta = 155.48$, 77.25, 69.84, 33.77, 26.68, 22.48, 14.01 ppm. GC-MS (*m/z*): 144.20. **4-ethyl-1,3-dioxolan-2-one:** ¹H NMR (300 MHz, CDCl₃): $\delta = 4.48$ (m, 1H), 4.30 (m, 1H), 4.01 (m, 1H), 1.34 (m, 2H), 0.92 (t, 3H). ¹³C NMR (300 MHz, CDCl₃): $\delta = 155.91$, 78.51, 69.52, 24.35, 13.92 ppm. GC-MS (*m/z*): 116.10.

4,4-dimethyl-1,3-dioxolan-2-one: ¹H NMR (300 MHz, CDCl₃): δ = 4.06 (m, 2H), 1.46 (s, 6H). ¹³C NMR (300 MHz, CDCl₃): δ = 154.16, 87.68, 75.41, 27.63 ppm. GC-MS (*m/z*): 116.00.

4-(allyloxymethyl)-1,3-dioxolan-2-one: ¹H NMR (300 MHz, CDCl₃): 5.73 (m, 1H), 5.17 (m, 2H), 4.71 (m, 1H), 4.40 (m, 1H), 4.25 (m, 1H), 3.90 (m, 2H), 3.58 (m, 2H). ¹³C NMR (300 MHz, CDCl₃): δ = 155.41, 133.96, 117.23, 77.67, 69.14, 66.55, 66.12 ppm. GC-MS (*m/z*): 158.00.

Kinetic Studies. The CO₂ fixation kinetics has been studied by time-dependent spectrophotometry measurements at 25 °C. The intermediates $[(LNi)_2(CO_3)]^{2+}$ were generated by treating the stoichiometric amount of complexes **1** - **4** (1 × 10⁻³ M) with CO₂ in the presence of Et₃N (2

equivalents) in acetonitrile. The formation constant of the intermediates $[(LNi)_2(CO_3)]^{2+}$ has been determined by monitoring the new absorbance bands around at 592 - 681 nm.

The intermediate $[(LNi)_2(CO_3)]^{2+}$ was freshly generated from 1 - 4 $(1 \times 10^{-3} \text{ M})$ with 2 equivalents of Et₃N in the presence of 1 bar CO₂ in acetonitrile. After reaching maximum intensity at 592 - 693 nm, the substrate epichlorohydrin has been added via microsyringe into the reaction mixture at 70 °C. Then, the reaction was carefully monitored by diode array spectrometer and the decay constants of the $[(LNi)_2(CO_3)]^{2+}$ were determined. After a while, the reaction mixture was passed through a silica column and the formation of cyclic carbonate was confirmed by GC-MS/GC and ¹H and ¹³C NMR.

Figure S1. ¹H and ¹³C NMR spectra for L1 in CDCl₃.

Figure S2. ¹H and ¹³C NMR spectra for L2 in CDCl₃.

Figure S3. ¹H and ¹³C NMR spectra for L3 in CDCl₃.

Figure S4. ¹H and ¹³C NMR spectra for L4 in CDCl₃.

Figure S5. Molecular structure of [Ni(L1)(CH₃CN)₃](BPh₄)₂, **1**. The hydrogen atoms and BPh₄⁻ are omitted for clarity.

Figure S6. Optimized structure of 2 (a), 3 (b) and 4 (c) using B3LYP 631-G/ LANL2DZ basis set.

Figure S7. (a) Solid-state absorption spectra of 1 - 4. (b) Electronic spectra of 1 - 4 (1×10^{-3} M) in acetonitrile at 25 °C.

Figure S8. (a) Cyclic voltammograms and (b) DPV of **1** - **3** (1×10^{-3} M) in acetonitrile at 25 °C. Supporting electrolyte: TBAP (0.1 M); Reference electrode: Ag/Ag⁺ (non-aqueous); Working electrode: Pt-sphere. Scan rate = 100 mV s⁻¹.

Figure S9. Cyclic voltammograms and DPV of **4** (1×10^{-3} M) in acetonitrile at 25 °C. Supporting electrolyte: TBAP (0.1 M); Reference electrode: Ag/Ag⁺ (non-aqueous); Working electrode: Pt-sphere. Scan rate = 100 mV s⁻¹.

Figure S10. ¹H and ¹³C NMR spectra of 4-methyl-1,3-dioxolan-2-one in CDCl₃.

Figure S11. ¹H and ¹³C NMR spectra of 4-phenyl-1,3-dioxolan-2-one in CDCl₃.

Figure S12. ¹H and ¹³C NMR spectra of 1,3-benzodioxolan-2-one in CDCl₃.

Figure S13. ¹H and ¹³C NMR spectra of 4-(chloromethyl)-1,3-dioxolan-2-one in CDCl₃.

Figure S14. ¹H and ¹³C NMR spectra of 4-butyl 1,3-dioxolan-2-one in CDCl₃.

Figure S15. ¹H and ¹³C NMR spectra of 4-ethyl-1,3-dioxolan-2-one.

Figure S16. ¹H and ¹³C NMR spectra of 4,4-dimethyl-1,3-dioxolan-2-one.

Figure S17. ¹H and ¹³C NMR spectra of 4-(allyloxymethyl)-1,3-dioxolan-2-one.

Figure S18. Temperature depended yield and selectivity of propylene carbonate production by 4 (2.5 μ mol, 0.05 mol%), propylene oxide (5 mmol), Et₃N (5 μ mol) under 1 atm CO₂ in CH₃CN (2 mL) for 8 hours with various temperature.

Figure S19. Influence of Et₃N for the CO₂ fixation reaction. Reaction condition: propyleneoxide (5 mmol), 4 (2.5 μ mol, 0.05 mol%) and Et₃N (0.5 – 3 equivalents) in CH₃CN (2.0 mL) under 1 atm CO₂ at 100 °C over 8 hours.

Figure S20. Influence of H₂O in the CO₂ fixation reaction. Reaction condition: propyleneoxide (5 mmol), **4** (2.5 μ mol, 0.05 mol%) and Et₃N (5 μ mol) in CH₃CN (2.0 mL), H₂O (0.5 – 2.5 mmol) under 1 atm CO₂ at 100 °C.

Figure S21. Electronic spectral change for the reaction of 4 (5×10^{-3} M) with O₂ and CO₂ in acetonitrile at 25 °C.

Figure S22. Steric map of complex 1 (a), 2 (b), 3 (c) and 4 (d) calculated by SambVca 2.1 A.

Figure S23. Electronic spectral change for the reaction of 1 (5×10^{-3} M) with CO₂ in acetonitrile at 25 °C.

Figure S24. ESI-MS spectrum of 1a in acetonitrile.

Figure S25. FT-IR spectra for 1a – 4a using KBr.

Figure S26. ESI-MS spectrum of 2a in acetonitrile.

Figure S27. Electronic spectral change for the reaction of 2 (5 × 10⁻³ M) with CO₂ in acetonitrile at 25 °C.

Figure S28. The kinetic behavior of the complex **2** $(1 \times 10^{-3} \text{ M})$ with CO₂ in the presence of two equivalent Et₃N in acetonitrile solution at 25 °C. The inset shows the time course of the absorbance at 561 and 592 nm.

Figure S29. The reaction of $[(L2Ni)_2(CO_3)]^{2+}$ (1 × 10⁻³ M) with 50 equivalents of epichlorohydrin in acetonitrile at 70 °C. The inset shows the time course of the absorbance at 592 nm.

Figure S30. ESI-MS spectrum of 3a in acetonitrile.

Figure S31. Electronic spectral change for the reaction of **3** (1×10^{-3} M) with CO₂ in acetonitrile at 25 °C.

Figure S32. ESI-MS spectrum of 4a in acetonitrile.

Figure S33. Absorption spectra of 4 (solid-state, blue), 4 $(1 \times 10^{-3} \text{ M})$ (red) and 4a $(1 \times 10^{-3} \text{ M})$ in CH₃CN (green) at 25 °C.

Figure S34. The kinetic behavior of the complex 4 (1×10^{-3} M) with CO₂ in the presence of two equivalent Et₃N in acetonitrile solution at 25 °C. The inset shows the time course of the absorbance at 584 and 581 nm.

Figure S35. The reaction of $[(L4Ni)_2(CO_3)]^{2+}$ (1 × 10⁻³ M) with 50 equivalents of epichlorohydrin in acetonitrile at 70 °C. The inset shows the time course of the absorbance at 681 nm.

Figure S36. Electronic spectral change of complex 1, 1a and $1a + \text{LiClO}_4$ in acetonitrile at room temperature.

Figure S37. Electronic spectral change of complex 2, 2a and 2a + LiClO₄ in acetonitrile at room temperature.

Figure S38. Electronic spectral change of complex 3, 3a and $3a + \text{LiClO}_4$ in acetonitrile at room temperature.

Figure S39. ESI-MS spectra of 4 (top) and regeneration of the catalyst 4 (bottom) in acetonitrile solution.

Figure S40. Recyclability test for 4 in the presence of CO₂ (a) and atmospheric air (b).

Figure S41. ORTEP plot for **1a (a)**, **2a (b)** and **4a (c)**. The probability ellipsoids are drawn at the 50% probability level. The H atoms are omitted for the clarity.

Bond lengths		Bond angles	
Ni(1)-N(1)	1.985(3)	N(1)-Ni(1)-N(3)	158.1(12)
Ni(1)-N(2)	2.152(3)	N(1)-Ni(1)-N(6)	93.8(12)
Ni(1)-N(3)	2.085(3)	N(1)-Ni(1)-N(2)	86.0(11)
Ni(1)-N(4)	2.175(3)	N(1)-Ni(1)-N(5)	95.1(13)
Ni(1)-N(5)	2.153(3)	N(1)-Ni(1)-N(4)	80.4(13)
Ni(1)-N(6)	2.120(3)	N(3)-Ni(1)-N(6)	88.42(13)
		N(3)-Ni(1)-N(2)	72.25(12)
		N(3)-Ni(1)-N(5)	106.73(12)
		N(3)-Ni(1)-N(4)	100.21(12)
		N(6)-Ni(1)-N(2)	88.27(13)
		N(6)-Ni(1)-N(5)	88.74(12)
		N(6)-Ni(1)-N(4)	169.13(13)
		N(2)-Ni(1)-N(4)	100.51(12)
		N(5)-Ni(1)-N(4)	82.6(13)

Table S1. Selected bond distances $^{a}\left(\mathring{A}\right)$ bond angles $^{a}\left(^{o}\right)$ of 1

^aStandard deviations in parenthesis

	2	3	4
Bond length			
Ni(1)-N(1)	2.139	2.125	2.061
Ni(1)-N(2)	2.204	2.208	2.132
Ni(1)-N(3)	2.143	2.150	2.148
Ni(1)-N(4)	2.130	2.136	2.123
Ni(1)-N(5)	2.066	2.137	2.161
Ni(1)-N(6)	2.351	2.252	2.141
Bond Angle			
N(1)-Ni(1)-N(3)	160.63	156.58	159.07
N(1)-Ni(1)-N(6)	94.56	83.54	86.17
N(1)-Ni(1)-N(2)	83.48	81.02	82.24
N(1)-Ni(1)-N(5)	84.46	91.45	100.60
N(1)-Ni(1)-N(4)	85.64	83.26	88.98
N(3)-Ni(1)-N(6)	98.57	91.84	95.68
N(3)-Ni(1)-N(2)	76.40	74.65	76.98
N(3)-Ni(1)-N(5)	115.54	105.82	93.79
N(3)-Ni(1)-N(4)	79.121	85.69	100.31
N(6)-Ni(1)-N(2)	103.33	79.65	102.08
N(6)-Ni(1)-N(5)	163.45	157.81	165.28
N(6)-Ni(1)-N(4)	75.14	86.32	83.365
N(2)-Ni(1)-N(4)	167.33	172.32	174.069
N(5)-Ni(1)-N(4)	81.22	80.35	83.88

Table S2. Calculated bond distance and bond angle for 2 - 4 by DFT method

Complex	Electronic Spectra ^a	Redox data ^c				
-	_	Epa	Epc	ΔE	$E_{1/2}$ (V)
	λ_{max} , nm. (ϵ , M ⁻¹ cm ⁻¹)			(mV)		
		(V)	(V)		CV	DPV
1	542 (351), 769 (270), 845 (348). 610 ^b	-0.515	-0.771	256	-0.643	-0.621
1 a	596 (273), 794 (183), 896 (291)	-0.590	-0.831	241	-0.710	
2	561 (491), 776 (390), 883 (417). 640 ^b	-0.551	-0.820	269	-0.685	-0.646
2a	592 (501), 794 (247), 927 (447)	-0.643	-0.869	226	-0.756	
3	569 (554), 770 (290), 874 (533). 520 ^b	-0.432	-0.663	231	-0.547	-0.592
3a 4	608 (520), 800 (308), 1010 (560) 584 (291), 791 (210), 864 (218). 580 ^b	-0.605 -0.614	-0.820 -0.793	215 190	-0.712 -0.703	-0.691
4 a	681 (205), 794 (156), 872 (120)	-0.669	-0.879	210	-0.774	

Table S3. The electronic spectral, redox data of the nickel(II) complexes and their CO2 adducts

^aConcentration: 1×10^{-3} M in acetonitrile. ^bIn diffuse reflectance. ^cConcentration: 1×10^{-3} M in acetonitrile; supporting electrolyte: 0.1 M TBAP. Working electrode: Pt sphere, reference electrode: Ag/Ag⁺ and counter electrode: Pt wire.

Entry ^a	Catalyst	Temperature	Yield ^d	TON	TOF	Selectivity
	(mol%)	(°C)	(%)		(h ⁻¹)	(%)
1	0.025	25	16	320	40	>99
2	0.05	25	31	620	78	>99
3	0.05	40	42	840	105	>99
4	0.05	60	65	1300	163	>99
5	0.05	80	78	1560	195	>99
6	0.05	100	91	1820	228	>99
7	0.05	120	93	1860	233	>99
8	-	100	4	80	10	>99
9 ^b	0.05	100	6	120	15	-
10 ^c	0.05	100	78	1560	195	>99
11 ^d	0.05	100	82	1640	205	>99
12 ^e	0.05	100	64	1280	160	>99

Table S4. Optimization of the reaction of propylene oxide with 1 atm CO_2 using 4

^aPropylene oxide (5 mmol). ^bAbsence of Et₃N. ^cusing catalyst **1**. ^dusing catalyst **2**. ^eusing catalyst **3**.

Table S5. Selected bond distances^a (Å) bond angles^a (°) for 1a and 2a.

[(L1Ni) ₂ (µ-CO	D ₃)(H ₂ O)(CH ₃ C	CN)](CH ₃ CN)(BPh4)2 1	a		
			Bond Distance	e			
Ni(1)-N(1)	2.056		Ni(2)-N(6)	2.067		Ni(1)-N(2)	2.072
Ni(2)-N(7)	2.099		Ni(1)-N(3)	2.099		Ni(1)-O(1)	2.057
Ni(1)-N(4)	2.075		Ni(2)-O(2)	2.044		Ni(2)-N(5)	2.071
Ni(2)-O(4)	2.100						
			Bond Angle				
N(1)-Ni(1)-N	(3)	160.6	O(4)-Ni(2)-O	(2)	93.5	N(1)-Ni(1)-N(4)	92.8
N(5)-Ni(2)-O	(4)	93.1	N(1)-Ni(1)-N	(2)	83.1	N(7)-Ni(2)-O(4)	93.5
N(1)-Ni(1)-O	(3)	95.7	N(6)-Ni(2)-O	(2)	170.0	N(2)-Ni(1)-O(3)	165.8
N(5)-Ni(2)-O	(2)	94.2	N(3)-Ni(1)-O	(3)	101.7	N(7)-Ni(2)-O(2)	103.8
N(4)-Ni(1)-O	(3)	96.0	N(6)-Ni(2)-N	(5)	83.1	N(2)-Ni(1)-N(3)	77.8
N(6)-Ni(2)-N	(7)	77.7	N(4)-Ni(1)-N	(3)	93.5	N(5)-Ni(2)-N(7)	160.2
N(6)-Ni(2)-O	(4)	96.1					

[(L2Ni)₂(μ -CO₃)(CH₃CN)₂](BPh₄)₂(CH₃CN)₂ **2a** Bond Distance

		Dolla Dis	lance			
Ni(1)-N(1)	2.146(3)	Ni(2)-N(5)	2.138(4)	Ni(2))-N(8)	2.077(4)
Ni(1)-N(2)	2.066(3)	Ni(2)-N(6)	2.075(3)	Ni(1)-O(1)	2.041(3)
Ni(1)-N(3)	2.105(3)	Ni(2)-N(7)	2.127(3)	Ni(2))-O(2)	2.029(3)
Ni(1)-N(4)	2.088(4)					
		В	ond Angle			
N(2)-Ni(1)-O	0(1) 16	5.60(13)	N(6)-Ni(2)-	-O(2)	170.6	2(13)
N(4)-Ni(1)-O	95 (1)	.80(14)	N(8)-Ni(2)-	-O(2)	89.02	(13)
N(4)-Ni(1)-N	I(2) 97	.37(15)	N(6)-Ni(2)-	-N(8)	98.17	(15)
N(3)-Ni(1)-O	91 91	.38(13)	N(7)-Ni(2)-	-O(2)	92.17	(12)
N(2)-Ni(1)-N	I(3) 94	.70(14)	N(6)-Ni(2)-	-N(7)	93.71	(14)
N(4)-Ni(1)-N	l(3) 88	.82(15)	N(7)-Ni(2)-	-N(8)	90.95	(15)
N(1)-Ni(1)-O	97 (1)	.08(13)	N(5)-Ni(2)-	-O(2)	97.57	(13)
N(1)-Ni(1)-N	I(2) 77	.01(14)	N(5)-Ni(2)-	-N(6)	76.21	(15)
N(1)-Ni(1)-N	l(4) 90	.57(15)	N(8)-Ni(1)-	-N(5)	92.42	(15)
N(1)-Ni(1)-N	(3) 17	1.54(14)	N(7)-Ni(2)	-N(5)	169.7	4(14)

^aStandard deviations in parenthesis

$[(L4Ni)_2(\mu-CO_3)(H_2O)_2(C_3H_6O)](ClO_4)_2$ 4a							
		Bond D	Distance				
Ni(1)-N(1)	2.055(5)) Ni(2)-N(5)	2.075(5)	Ni(2)-O(6)	2.221(4)		
Ni(1)-N(2)	2.070(5)) $Ni(2)-N(6)$	2.112(6)	Ni(1)-O(1)	2.054(4)		
Ni(1)-N(3)	2.096(5)) $Ni(2)-N(4)$	2.052(4)	Ni(2)-O(2)	2.064(4)		
Ni(1)-O(4)	2.249(4))					
			Bond Angle				
N(1)-Ni(1)-N	(2) 8	81.9(2)	O(6)-Ni((2)-N(4)	94.0(2)		
O(1)-Ni(1)-N(1) 9	96.88(2)	O(2)-Ni((2)-N(4)	95.42(19)		
O(1)-Ni(1)-N(2) 1	68.58(5)	O(6)-Ni((2)-O(2)	97.33(17)		
O(1)-Ni(1)-O(4) 9	97.66(17)	N(4)-Ni((2)-N(5)	82.7(2)		
N(1)-Ni(1)-O(4) 9	93.2(2)	O(6)-Ni((2)-N(5)	171.08(17)		
N(2)-Ni(1)-O(4) 9	93.74(19)	N(4)-Ni((2)-N(6)	159.4(2)		
O(1)-Ni(1)-N(3) 1	101.8(2)	N(4)-Ni((2)-N(6)	91.7(2)		
N(3)-Ni(1)-N(1) 1	159.6(2)	O(2)-Ni((2)-N(6)	103.44(19)		
N(2)-Ni(1)-N(3) 7	78.2(2)	N(5)-Ni((2)-N(6)	74.4(2)		
N(3)-Ni(1)-O(4) 9	92.34(19)	N(4)-Ni((2)-O(2)	87.63(5)		

Table S6. Selected bond distances a (Å) bond angles a (°) for 4a.

	1	1a	2a	4a
Formula	NiC67H68B2N6	Ni ₂ C ₇₇ H ₈₆ B ₂ N ₈ O4	$Ni_{2}C_{83}H_{94}B_{2}N_{10}O_{3}$	Ni ₂ C ₃₄ H ₆₄ Cl ₂ N ₆ O ₁₈
Fw	1044.60	1326.57	1418.72	1033.23
Crystal	Monoclinic	Triclinic	Orthorhombic	Orthorhombic
system				
Space group	P 21/c	P-1	P n a21	P 21 21 21
Temperature	293(2) K	291(2) K	291(2) K	291(4) K
a/Å	24.8742(10)	13.9721(5)	31.3574(16)	11.7462(7)
b/Å	17.6602(8)	14.2148(5)	11.0783(5)	15.1861(9)
c/A^0	26.6397(11)	20.9208(10)	21.4842(10)	25.9560(16)
$\alpha/^0$	90	92.908(3)	90	90
$\beta/^0$	96.624(4)	106.598(3)	90	90
$\gamma^{/0}$	90	113.393(3)	90	90
Volume/Å ³	11624.3(9)	3590.5(3)	7463.3(6)	4630.0(5)
Ζ	4	2	4	4
$\rho_{calc}mg\!/mm^3$	1.196	1.227	1.263	1.482
μ/mm^{-1}	0.380	0.578	0.561	1.005
F(000)	4440	1404.0	3008.0	2176
Reflection	26525	14089	12818	12549
collected				
Goodness-	1.020	1.023	1.038	1.022
of-fit on F ²				
R1 ^a	0.0942	0.0494	0.0396	0.0552
wR2 ^b	0.2901	0.1228	0.0708	0.1285

 Table S7. Crystal data and structure refinement for complexes 1, 1a, 2a and 4a.

 $R1 = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}| WR_{2} = \sum w[(F_{o} - F_{c})^{2} / \sum w[(F_{o}^{-2})^{2}]^{1/2}]$

Reply for A and B-level Check CIF alerts

Complex 1

PLAT330_ALERT_2_A Large Aver Phenyl C-C Dist C105--C110. 1.43 Ang. PLAT330_ALERT_2_A Large Aver Phenyl C-C Dist C117--C122. 1.43 Ang. PLAT331_ALERT_2_A Small Aver Phenyl C-C Dist C57--C62. 1.34 Ang. PLAT331_ALERT_2_A Small Aver Phenyl C-C Dist C69--C74. 1.35 Ang. PLAT331_ALERT_2_A Small Aver Phenyl C-C Dist C111--C116. 1.34 Ang. PLAT330_ALERT_2_B Large Aver Phenyl C-C Dist C75--C80. 1.43 Ang. PLAT330_ALERT_2_B Large Aver Phenyl C-C Dist C81--C86. 1.42 Ang. PLAT331_ALERT_2_B Small Aver Phenyl C-C Dist C63--C68. 1.36 Ang. PLAT331_ALERT_2_B Small Aver Phenyl C-C Dist C87--C92. 1.35 Ang. PLAT331_ALERT_2_B Small Aver Phenyl C-C Dist C87--C92. 1.35 Ang. PLAT331_ALERT_2_B Small Aver Phenyl C-C Dist C93--C98. 1.35 Ang.

Author Response: These alerts are generated by the possible disorder or substantial thermal mobility of the tetraphenylamines.

PLAT213_ALERT_2_B Atom C30 has ADP max/min Ratio..... 4.6 prolat

Author Response: These alerts are generated because there is a large amount of disorder in the structure.

PLAT410_ALERT_2_B Short Intra H...H Contact H24A..H27B. 1.82 Ang. x,y,z = 1_555 Check

Author Response: The crystal was weakly diffracting and thus the quality of data is \ relatively poor. For that, the hydrogen atoms were included in geometrically calculated position and were refined according to the riding model.

PLAT910_ALERT_3_B Missing # of FCF Reflection(s) Below Theta (Min). 45 Note

Author Response: The unit cell is reasonable large and these low angle reflections are probably missing due to the beamstop.

Complex-1a

PLAT420_ALERT_2_B D-H Without Acceptor O22 --H22C. Please Check

Author Response: The bond O4-H40 is directed to a cavity whose disordered atomic content has been removed by SQUEEZE.