Characterizing the Solid Hydrolysis Product, UF₄(H₂O)_{2.5}, Generated from Neat Water Reactions with UF₄ at Room Temperature

Jonathan H. Christian^a, Christopher Klug^{†b}, Michael DeVore II^a, Eliel Villa-Aleman^a, Bryan J. Foley^a,

Nicholas Groden^a, A. Taylor Baldwin^a, Matthew Wellons^{a*}

^{a.} Savannah River National Laboratory, Aiken, SC 29803

^{b.} Naval Research Laboratory, Washington, D.C. 20375

*Matthew.Wellons@srnl.doe.gov

[†]Christopher.Klug@nrl.navy.mil

Supporting Information:

SI Figure 1. Raman spectrum of anhydrous UF_4 (black trace) with 16 distinct bands between 50 and 610 cm⁻¹ and one broad band at 4300 cm⁻¹. Band locations are identified in red. The spectrum was acquired with a 785 nm excitation laser.

SI Figure 2. The infrared spectrum of anhydrous UF_4 is featureless and is consistent with UF_4 having no IR-active vibrational modes in the measured spectral range. The sharp feature near 500 cm⁻¹ is fluorescence and the sharp features between 2000 - 2200 cm⁻¹ are artifacts of the diamond ATR in the spectrometer.

SI Figure 3. (Top): Powder X-ray diffraction pattern of anhydrous UF_4 (black trace) with Miller indices for select peaks (blue text). (Bottom): ICDD diffraction lines of UF_4 (Powder Diffraction File No. 01-082-2317).

SI Figure 4. Ball and stick representations of the crystallographic structure within a single unit cell for anhydrous UF_4 (top) and $UF_4(H_2O)_{2.5}$ (bottom). Yellow = uranium, green = fluorine, red = oxygen. Water hydrogens are omitted for clarity

SI Table 1. Crystallographic features of UF₄ and UF₄(H₂O)_{2.5}

	UF ₄	UF ₄ (H ₂ O) _{2.5}
Space Group	<i>C</i> 2/ <i>c</i> (No. 15)	<i>Pnma</i> (No. 62)
U-F polyhedral	UF ₈	UF ₉
U-O-F polyhedral	-	UO_4F_5
Density	6.7	4.754

¹⁹F Magic Angle Spinning Nuclear Magnetic Resonance:

To probe the sharp peak observed in our ¹⁹F NMR measurements after UF₄ had soaked in water, a small aliquot of solid sample was removed from the water and was analyzed by MAS NMR. ¹⁹F Magic Angle Spinning (MAS) NMR spectra were obtained at 11.7 T (¹⁹F resonance frequency of 470.6 MHz) using a Varian NMR500 spectrometer and a 1.2 mm double-resonance UltraFast MAS NMR probe. The MAS NMR spectrum showed a series of spinning sidebands which are in close agreement with a broadened set of sidebands associated with uranyl fluoride – $UO_2F_2(H_2O)_{1.57}$ (SI Figures 7 and 8).¹ The close agreement between these spectra indicates that uranyl fluoride forms - albeit to a small extent - when UF₄ is exposed to water. The broadening in all ¹⁹F MAS NMR spectra is likely due to the non-crystalline nature of the uranyl fluoride as has been observed previously.¹

SI Figure 5 ¹⁹F NMR spectra acquired at a probe height where the field homogeneity was optimal and at a frequency where fluorine bound to diamagnetic species is likely to be observed (~ 94.3 MHz). The black spectrum is a central sub-spectrum corresponding to one of the 11 subspectra obtained in a point-by-point method for a wet sample of UF₄ acquired with a solid echo with pulse lengths of 0.6 μ s, delay between pulses of 25 μ s, wait time between scans of 4 ms and longer, and total number of scans equal to 20480. The spectrum in red was obtained for a commercial uranyl fluoride sample (UO₂F₂(H₂O)_{1.57}) using a solid echo with pulse lengths of 3.0 μ s, delay between pulses of 11 μ s, wait time between scans of 1 s and longer, and total number of scans equal to 1536.

SI Figure 6. ¹⁹F MAS NMR spectra obtained from Hahn echo experiments with a spinning frequency of 40 kHz for a) small aliquot (3.9 mg) of UF₄ sample that been exposed to water and left to stand for over a year. The pulse lengths in the echo were 0.8 µs and 1.6 µs for $\pi/2$ and π pulses respectively. The delay between pulses was equal to one rotor period, 25 µs. The delay between scans was 8 s. The total number of scans was 2816 corresponding to a total experiment time of 6.3 hours; b) commercial UO₂F₂(H₂O)_{1.57} (3.7 mg). The pulse lengths in the echo were 1.7 µs and 3.4 µs for $\pi/2$ and π pulses respectively. The delay between pulses was equal to four rotor periods, 100 µs. The delay between scans was 10 s. The total number of scans was 256 corresponding to a total experiment time of 42.7 minutes. To make the comparison clearer, the data was processed using a line broadening of 5 kHz.

SI Figure 7. ¹⁹F MAS NMR spectra obtained for a) UF₄ in water, b) commercial UO₂F₂(H₂O)_{1.57} processed with 100 Hz line broadening, and c) commercial UO₂F₂(H₂O)_{1.57} processed with 5 kHz line broadening. The data indicate that a small amount of UO₂F₂(H₂O)_{1.57} forms during the UF₄-water reaction.

SI Figure 8. SEM images of commercial anhydrous UF_4 before water exposure show that the dry pristine particles have spheroid morphology and a smooth surface.

SI Figure 9. Scanning electron micrographs of UF₄ hydrate (UF₄(H₂O)_{2.5}). This material was obtained after stirring anhydrous UF₄ in deionized water for 1 day. The top images show the bulk material; the bottom images show details of the needle-like crystals.

REFERENCES:

1. M. A. DeVore, C. A. Klug, M. R. Kriz, L. E. Roy and M. S. Wellons, *The Journal of Physical Chemistry A*, 2018, **122**, 6873-6878.