Supporting Information

Unsymmetrical Diarylamido-Based Rare-Earth Alkyl Complexes: Synthesis and Catalytic Performance in Isoprene Polymerization

Wenhui Ren^a, Hui Liu,^a Fen You,^a Pengjuan Mao,^b Yat-Ming So,^c Xiaohui Kang*^b and Xiaochao Shi*^a

 ^aDepartment of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China; E-mail: xcshi@shu.edu.cn
^bCollege of Pharmacy, Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China.; E-mail: kangxh@dmu.edu.cn
^cDepartment of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay,

Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Figure S2 ¹³C NMR spectrum of **P-Sc** (101 MHz, C₆D₆, 25 °C)

-0.20 -0.15 -0.10 -0.05 -0.00 18.00 4.44 0.95 8.39 8.39 2.29 1.11 1.10 1.08 2.12 6.06 --0.05 2 1 0 6 5 f1 (ppm) 3 -1 12 11 8 7 4 -2 10 9

-0.25

Figure S4 ¹H NMR spectrum of P-Y (400 MHz, C₆D₆, 25 °C)

Figure S5 13 C NMR spectrum of P-Y (101 MHz, C₆D₆, 25 °C)

Figure S6 ³¹P {¹H} NMR spectrum of **P-Y** (162 MHz, C₆D₆, 25 °C)

Figure S7 ¹H NMR spectrum of P-Lu (400 MHz, C₆D₆, 25 °C)

Figure S8 ¹³C NMR spectrum of P-Lu (101 MHz, C₆D₆, 25 °C)

Figure S9 ³¹P {¹H} NMR spectrum of P-Lu (162 MHz, C₆D₆, 25 °C)

Figure S10 ¹H NMR spectrum of **S-Sc** (400 MHz, C₆D₆, 25 °C)

Figure S11 ¹³C NMR spectrum of S-Sc (101 MHz, C₆D₆, 25 °C)

Figure S12 ¹H NMR spectrum of **S-Y** (400 MHz, C₆D₆, 25 °C)

Figure S13 ¹³C NMR spectrum of S-Y (101 MHz, C₆D₆, 25 °C)

Figure S14 ¹H NMR spectrum of S-Lu (400 MHz, C₆D₆, 25 °C)

Figure S15 ¹³C NMR spectrum of S-Lu (101 MHz, C₆D₆, 25 °C)

Figure S16 ¹H NMR spectrum of **N-Sc** (400 MHz, C₆D₆, 25 °C)

Figure S17 ¹³C NMR spectrum of N-Sc (101 MHz, C₆D₆, 25 °C)

Figure S18 ¹H NMR spectra of rare-earth complexes with addition of borate $[Ph_3C][B(C_5F_5)_4].(a)$ **P-Lu** + $[Ph_3C][B(C_5F_5)_4];$ (b) **P-Y** + $[Ph_3C][B(C_5F_5)_4]$ (400 MHz, C₆D₅Br, 25 °C; * solvent)

Figure S19 ³¹P {¹H} NMR spectrum of (a) PNN ligand (b) P-Sc (c) P-Sc + $[Ph_3C][B(C_5F_5)_4]$ (162 MHz, chlorobenzene, 25 °C)

Figure S20 ³¹P {¹H} NMR spectrum of (a) PNN ligand (b) P-Y (c) P-Y+ [Ph₃C][B(C₅F₅)₄] (162 MHz, chlorobenzene, 25 °C)

Figure S21 ³¹P {¹H} NMR spectrum of (a) PNN ligand (b) P-Lu (c) P-Lu+ [Ph₃C][B(C₅F₅)₄] (162 MHz, chlorobenzene, 25 °C)

Figure S22 DSC thermograms of PIP polymer from entry 8 of Table 1.

Figure S23 DSC thermograms of PIP polymer from entry 19 of Table 1.

Figure S24 DSC thermograms of PIP polymer from entry 25 of Table 1.

Ente		co-cat.	t (min)	Т (°С)	[IP]/[Ln]	Conv (%)	Microstructure (%) ^b		Mc	M /M c	- 661	
Entry	cat.						<i>cis</i> -1,4	trans-1,4	3,4-	$- M_n^c$	$M_{\rm W}/M_{\rm n}^{\rm c}$	em
1	P-Y	А	1	25	750:1	34	95.2	4.2	0.6	3.76	1.06	0.46
2	P-Y	Α	1.5	25	750:1	48	88.7	9.7	1.6	4.65	1.05	0.53
3	P-Y	Α	2.5	25	750:1	71	89.1	9.4	1.5	6.10	1.05	0.59
4	P-Y	Α	3.5	25	750:1	85	87.3	11.4	1.3	6.88	1.06	0.63
5	P-Y	Α	5	25	750:1	100	88.0	10.7	1.3	7.95	1.05	0.64
6	P-Y	Α	4	25	300:1	100	87.4	11.5	1.1	3.79	1.06	0.54
7	P-Y	Α	5	25	500:1	100	86.7	12.0	1.3	5.34	1.06	0.63
8	P-Y	Α	10	25	1000:1	100	86.3	11.9	1.8	10.37	1.05	0.65
9	P-Y	Α	15	25	1500:1	100	85.5	13.5	1.0	14.69	1.07	0.69
10	P-Y	В	5	25	750:1	77	85.8	13.1	1.1	nd	nd	nd
11	P-Lu	Α	5	25	750:1	49	18.3	71.9	9.8	5.30	1.07	0.47
12	P-Lu	Α	10	25	750:1	69	18.9	71.6	9.5	7.72	1.07	0.46
13	S-Y	Α	90	25	750:1	68	86.8	13.7	0	6.22	1.02	0.56
14	S-Y	Α	120	25	750:1	84	81.5	18.5	0	7.04	1.03	0.61
15	S-Lu	Α	360	0	750:1	0	-	-	-	-	-	-
activator: A	$= [Ph_3C][E$	$B(C_5F_5)_4];$	^b Determine	ed by 13	C NMR and	d ¹ H NM	IR. ^c Deter	rmined by	GPC in	THF at 4	40 °C agair	nst a polystyrene
standard.			d	-	Ini	tiation			effici	ency=M _n	(calculated	$d)/M_n$ (measured)

Table S1. The data for P-Y, P-Lu, S-Y and S-Lu

Figure S25 Molecular structure of S-Y (thermal ellipsoids at the 40 % probability level). Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Y1-O2 2.3815(17), Y1-N1 2.3883(17), Y1-C28 2.396(2), Y1-C24 2.422(2), Y1-N2 2.4263(18), Y1-S1 2.9869(5), O2-Y1-N1 85.16(6), O2-Y1-C28 87.30(8), N1-Y1-C28 125.00(7), O2-Y1-C24 103.33(8), N1-Y1-C24 136.65(7), C28-Y1-C24 98.06(8), O2-Y1-N2 154.64(6), N1-Y1-N2 74.56(6), C28-Y1-N2 91.94(8), C24-Y1-N2 101.88(8), O2-Y1-S1 72.85(5), N1-Y1-S1 66.90(4), C28-Y1-S1 156.49(7)

	P-Sc	P-Y	P-Lu	S-Y	
Empirical formula	$C_{37}H_{48}ScN_2OPSi_2$	$C_{37}H_{48}YN_2OPSi_2 \\$	$C_{37}H_{48}LuN_2OPSi_2 \\$	$C_{35}H_{52.50}YN_2OSSi_2$	
Formula weight	668.88	712.83	798.89	710.44	
Temperature/K	173(2)	173(2)	173(2)	173(2)	
Wavelength/ Å	1.34138	1.34138	0.71073	1.34138	
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic	
Space group	P2 ₁ /n	P2(1)	$P2_1/n$	P-1	
a/Å	10.8334(3)	10.9462(4)	10.8990(4)	10.9957(3)	
b/Å	28.3891(8)	28.3973(10)	28.3514(11)	11.6568(3)	
c/Å	13.0622(4)	13.2216(4)	13.1599(5)	14.7462(4)	
α/°	90°	90	90	86.602(2)	
β/°	109.6730(10)	109.9930(10)	109.8640(10)	83.774(2)	
γ/°	90	90	90	85.085(2)	
$V/Å^3$	3782.79(19)	3862.2(2)	3824.5(3)	1869.65(9)	
Z	4	4	4	2	
$D_c/Mg \ m^{-3}$	1.174	1.226	1.387	1.262	
μ/mm^{-1}	1.924	2.212	2.715	2.372	
F(000)	1424	1496	1624	751	
Crystal size/mm ³	0.180 x 0.100 x	0.440 x 0.200 x	0.170 x 0.110 x 0.060	0.180 x 0.110 x 0.060	
	0.050	0.100			
2θ range for data	3.407 to 57.022	3.378 to 56.998	1.795 to 27.156	4.125 to 57.998	
collection/°					
Limiting	-13, 13; -35, 31;	-13, 13; -35, 35;	-13, 13; -36, 36;	-13, 13; -14, 14;	
indices(hkl)	-16, 16	-16, 16	-16, 16	-18, 18	
Reflections	30846	120112	95764	22702	
collected					
Independent	7729	7915	8444	7884	
reflections					
R _{int}	0.0405	0.0734	0.0520	0.0385	
Completeness to $\theta/^{\circ}$	53.594 (99.7 %)	53.594 (100 %)	25.242 (100 %)	53.594 (99.5 %)	
Data/restraints/para	7729 / 0 / 405	7915 / 0 / 405	8444 / 0 / 405	7884 / 39 / 417	
meters					
Goodness-of-fit on	1.024	1.060	1.053	1.056	
F ²					
Final R indexes [I \geq	R1 = 0.0323,	R1 = 0.0272,	R1 = 0.0190,	R1 = 0.0375,	
2σ (I)]	wR2 = 0.0833	wR2 = 0.0684	wR2 = 0.0403	wR2 = 0.0944	
Final R indexes [all	R1 = 0.0395,	R1 = 0.0304,	R1 = 0.0247,	R1 = 0.0403,	
data]	wR2 = 0.0882	wR2 = 0.0700	wR2 = 0.0425	wR2 = 0.0967	
Largest diff.	0.293, -0.308	0.499, -0.630	0.482, -0.414	2.376, -0.631	
peak/hole / e Å ⁻³					

Table S2. Summary of the crystallographic data for P-Sc, P-Y, P-Lu, S-Y and N-Sc

 $R_I = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|; wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$

Computational details

All calculations were performed with the Gaussian 09 program.¹ The B3PW91 hybrid exchange-correlation functional was utilized for geometry optimization.²⁻⁴ Each optimized structure was subsequently analyzed by harmonic vibration frequencies for characterization of a minimum (Nimag = 0) or a transition state (Nimag = 1) and providing thermodynamic data. The transition state structures are shown to connect the reactant and product on either side via intrinsic reaction coordinate (IRC) following. The 6-31G* basis set was considered for C, H, and N atoms, and the Si, P, Sc, Y, and Lu atoms were treated by the Stuttgart/Dresden effective core potential (ECP) and the associated basis sets.^{5,6} The basis sets of Si and P were augmented with one dpolarization function (exponent of 0.284 and 0.387, respectively).⁷ This basis set is denoted as "BSI". To obtain more reliable relative energies, the single-point calculations of optimized structures were carried out at the level of B3PW91-D3 (B3PW91 with Grimme's DFT-D3 correction)^{8,9}/BSII, taking into account solvation effect of chlorobenzene with the SMD¹⁰ solvation model. In the BSII, the 6-311+G(d,p) basis set was used for nonmetal atoms, while the basis sets together with associated pseudopotentials for Sc, Y, and Lu atoms are the same as that in geometry optimization. Therefore, unless otherwise mentioned, the free energy (ΔG , 298.15 K, 1 atm) in solution, which was used for description of energy profiles, was obtained from the solvation single-point calculation and the gas-phase Gibbs free energy correction. The 3D molecular structures displayed in this paper were drawn by using CYLview.¹¹

(1) Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; heeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.; Izmaylov, A.; Bloino, J.; Zheng, G.; Sonnenberg, J.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr.; Peralta, J.; Ogliaro, F.; Bearpark, M.; Heyd, J.; Brothers, E.; Kudin, K.; Staroverov, V.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.; Iyengar, S.; Tomasi, J.; Cossi, M.; Rega, N.; Milam, N.; Klene, M.; Knox, J.; Cross, J.; Bskken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.; Yazyev, O.; Austin, A.; Cammi, R.; Pomelli, C.; Ochterski, J.; Marin, R.; Morokuma, K.; Zakrzewski, V.; Voth, G.; Salvador, P.; Dannenberg, J.; Dapprich, S.; Daniels, A.; Farkas, Ö.; Foresman, J.; Ortiz, J.; Cioslowski, J.; Fox, D. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT. 2009.

(2) Becke, A. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. **1993**, *98*, 5648–5653.

(3) Lee, C.; Yang, W.; Parr, R. Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* **1988**, *37*, 785–789.

(4) Perdew, J.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchangecorrelation hole of a many-electron system. *Phys. Rev. B* **1996**, *54*, 16533–16539.

(5) Andrae, D.; H. U.; Dolg, M.; Stoll, H.; P, H. Energy-adjusted Ab initio pseudopotentials for the second and third row transition elements. *Theor. Chim. Acta* **1990**, *77*, 123–141.

(6) Martin, J.; Sundermann, A. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: The atoms Ga-Kr and In-Xe. *J. Chem.*

Phys. 2001, 114, 3408-3420.

(7) Höllwarth, A.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. A set of d-polarization functions for pseudo-potential basis sets of the main group elements Al-Bi and f-type polarization functions for Zn, Cd, Hg, *Chem. Phys. Lett.* **1993**, *208*, 237–240.

(8) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104–15424.

(9) Grimme, S. Accurate description of van der waals complexes by density functional theory including empirical corrections. *J. Comput. Chem.* **2004**, *25*, 1463–1473.

(10) Marenich, A.; Cramer, C.; Truhlar, D. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B.* **2009**, *113*, 6378–6396.

(11) CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org)

Figure S26 Optimized structures (distance in Å) of cationic species catSc, catY, and catLu, all hydrogen atoms are omitted for cl

Table S3 All related energy profiles for isoprene polymerization at chain initiation and propagation stages catalyzed by species catSc, catY, and catLu. Energies are relative to corresponding cationic species catSc, catY, and catLu and *trans*-monomer.

catY	Insertion fashions	Y-C(1/2/3)	Y-TS(1/2/3)	Y-P(1/2/3)	$\Delta G^{\ddagger}/\text{kcal mol}^{-1}$
	trans-si	-1.4	14.0	-17.4	15.4
The first monomer	trans-re	-1.6	16.1	-18.2	17.7
insertion	cis-re	0.9	0.9 15.3 -17.4		15.3
	cis-si	1.8	15.3	-14.5	15.3
	trans-si-trans-si	-14.1	-2.3	-34.8	15.1
	trans-si-trans-re	-14.6	-2.3	^{-35.4} ∧	15.1
The second	Y-1	S2 _{anti-syn}		-21.3	9.6
monomer insertion	trans-si-cis-re	-13.2	-5.2	-30.9	12.2
	cis-re-cis-re	-10.7	2.3	-23.7	19.7
	cis-re-cis-si	-9.2	-3.2	-28.4	14.2
	trans-si-trans-si-trans-si	-22.4	-8.2	-39.9	26.6
The third monomer	trans-si-trans-re-trans-si	-23.1	-12.2	-42.0	23.2
insertion	Y-T	S3 _{anti-syn}		-25.5	12.2
	trans-si-trans-re-cis-si	-20.5	-13.5	-37.7	21.9

	cis-re-cis-si-cis-re	-17.9	-10.9	-37.5	17.5
catLu	Insertion fashions	Lu-C(1/2/3)	Lu-TS(1/2/3)	Lu-P(1/2/3)	$\Delta G^{\ddagger/kcal} mol^{-1}$
	trans-si	-2.6	14.2	-14.7	16.8
The first monomer	trans-re	0.7	15.7	-14.4	15.7
insertion	cis-re	2.3	14.3	-17.0	14.3
	cis-si	0.6	0.6 15.8 -12.0		15.8
	trans-si-trans-re	-14.1	-2.8	^{-32.7} ∧	11.9
The second	Lu-	TS2 _{anti-syn}		-20.7	7.9
monomer insertion	trans-si-cis-re	-11.1	-5.2	-28.6	9.5
	cis-re-cis-si	-6.8	-3.2	-27.1	13.8
	trans-si-trans-re-trans-si	-20.3	-11.6	^{-40.7} ∧	21.1
The third monomer	Lu-	TS3 _{anti-syn}	-24.8	13.2	
insertion	trans-si-trans-re-cis-si	-19.8	-14.9	-38.0	17.8
	cis-re-cis-si-cis-re	-15.6	-9.4	-36.0	17.7
catSc	Insertion fashions	Sc-C(1/2/3)	Sc-TS(1/2/3)	Sc-P(1/2/3)	$\Delta G^{\ddagger/kcal} mol^{-1}$
	trans-si	2.3	17.8	-16.4	17.8
The first monomer	trans-re	2.5	18.3	-16.7	18.3
insertion	cis-re	6.0	17.1	-18.4	17.1
	cis-si	3.6	18.5	-15.4	18.5
The second	trans-si-trans-re	-12.8	-1.3	-31.3	15.1
monomer insertion	cis-re-cis-si	-7.8	1.3	-23.9	19.7
The third money	trans-si-trans-re-trans-si	-18.4	-9.8	-39.0	21.5
insertion	trans-si-trans-re-cis-si	-17.3	-11.8	-36.5	19.5
	cis-re-cis-si-cis-re	-14.2	-8.3	-33.3	15.6

Figure S27 Energy profiles for the isoprene polymerization at chain initiation and propagation stages catalyzed by species P-Y. Energies are relative to corresponding cationic species catY and *trans*-

monomer.

Figure S28 Energy profiles for the isoprene polymerization at chain initiation and propagation stages catalyzed by species **P-Sc**. Energies are relative to corresponding cationic species **catSc** and *trans*-monomer.

Figure S29 Optimized geometric structures (distance in Å) of key transition states involved in Fig. 6, all hydrogen atoms are omitted for clarity.

Figure S30 Optimized geometric structures (distance in Å) of key transition states involved in Fig. 7, all hydrogen atoms are omitted for clarity.