Supporting information

RhNPs supported in N-functionalized mesoporous silica: effect on catalyst stabilization and catalytic activity

^aIsrael T. Pulido-Díaz, ^aAlejandro Serrano-Maldonado, Carlos Cesar López-Suárez, ^aPedro A. Méndez-Ocampo, ^bBenjamín Portales-Martínez,^c Aída Gutiérrez-Alejandre, ^aKarla P. Salas-Martin and Itzel Guerrero-Ríos^a*

^aDepto. de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México. Av. Universidad 3000, 04510 CDMX, México

^b CONACYT, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Laboratorio Nacional de Conversión y Almacenamiento de Energía, Instituto Politécnico Nacional, Calzada Legaría 694, Col. Irrigación, Ciudad de México, 11500, Mexico

^c Depto de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México. Av. Universidad 3000, 04510 CDMX, México

*Corresponding author, E-mail: itzelgr@unam.mx; Tel: +52 55 56223770

1. NMR spectra of (EtO)₃Si-(CH₂)₃-NAM

Figure S1 ¹H-NMR spectra (400.13 MHz, r. t., CDCl₃) of N-(3-(triethoxysilyl)propyl) nicotinamide (NAM) (*) denotes residual triethylamine on sample.

Figure S2 ¹³C{¹H}-NMR spectra (100.61 MHz, r. t., CDCl₃) of NAM. Asterisks (*) denotes residual triethylamine on sample.

Figure S3 {¹H} COSY-NMR spectra (400.13 MHz, r. t., CDCl₃) of NAM Asterisks (*) denotes residual triethylamine on sample.

Figure S4 {1H-13C} HSQC-NMR spectra (400.13 MHz, r. t., CDCl₃) of NAM. Asterisks (*) denotes residual triethylamine on sample

Figure S5 {¹H-¹³C} HMBC-NMR spectra (400.13 MHz, r. t., CDCl₃) of NAM. Asterisks (*) denotes residual triethylamine on sample.

2. FT-IR spectra of supported RhNPs.

Figure S6- IR spectra of SiO₂, RhNPs-A and THF.

Table S1 Characteristic absorption bands v (cm⁻¹) in IR spectra of N-grafted silicas and supported RhNPs.

Assignment	SiO ₂	RhNPs-A	SiO ₂ -APTES	RhNPs-B	SiO ₂ -NAM	RhNPs-C
v (SiO-H) and	3275br	3277br	3295br	3273br	3298br	3296br
ν (HO-H) _{Phys.}	1642w	1655w	1635w	1652m		
	1039s	1012s	1047s	1043s	1046s	1051s
v (Si-O-Si)	947sh	932sh	965sh	961sh	959sh	957sh
	788m	791m	795m	793m	795m	809m
δ (Si-O)	430m	410m	443m	431m	433m	445m
(С Ц)			2923m	2924m	2919m	2926m
V (C-H)			2853m	2854m	2841m	2861m
ν (C-N) _{amine}			1219sh	1215sh		
v (N-H)			1477w	1465w	1475m	1463m
δ (N-H)			1555w	1561w	1546m	1541m
γ(N-H) _{wagg}			698vw		703vw	699vw
v(C=O)					1640s	1648s
ν _{py} (C=C)					1193m	1209m
ν _{py} (C-H)					3078w	3091w
ν _{py} (C=N)					1427m	1417m

s (strong), br (broad), m (medium), w (weak), vw (very weak), sh (shoulder), py (pyridine)

3. XPS analysis of RhNPs

Figure S7 XPS survey of RhNPs-B.

Table S2 Element distribution on surface of RhNPs-B by XPS.

Elemer	nt Atomic %	Weight %
C 1s	40.3	19.8
N 1s	1.5	0.8
O 1s	36.7	24.1
Si 2p	11.5	13.2
Rh 3d	10.0	42.1

Figure S8 High resolution-XPS Rh 3d of RhNPs-B.

Table S3 Rhodium species distribution on surface of RhNPs-B by XPS.

Rł	Rh 3d (BE, eV)					
	3/2	5/2	(3d _{5/2})			
Rh (0)	311.05	306.31	36.4			
Rh (I)	312.01	307.17	34.7			
Rh (III)	312.93	308.29	28.9			

Residual STD = 1.07199

Figure S9 XPS survey of RhNPs-C.

Table S4 Element distribution on surface of RhNPs-C by XPS.

Element	Atomic %	Weight %
C 1s	39.0	16.1
N 1s	0.9	0.5
O 1s	40.6	22.5
Si 2p	5.6	5.1
Rh 3d	13.9	55.8

4. Thermal decomposition data of synthesized materials

Figure S10 Thermal decomposition data of SiO2-APTES run in air at heating rate of 1 °C/min.

Figure S11 Thermal decomposition data of SiO₂-(CH₂)₃-NAM run in air at heating rate of 5 °C/min.

Figure S12 Thermal decomposition data of RhNPs-A run in air at a heating rate of 1 °C/min.

Figure S13 Thermal decomposition data of RhNPs-B run in air at a heating rate of 1 °C/min.

Figure S14 Thermal decomposition data of RhNPs-C run in air at heating rate of 5 °C/min.

5. SEM images and particle distribution.

Figure S15 SEM images of functionalized silica SiO_2 -APTES.

Figure S16 Histogram of the SiO₂-APTES particle size distribution. Mean diameter = 393±74 nm (for 108 particles)

Figure S17 SEM images of functionalized silica SiO₂-(CH₂)₃-NAM.

Figure S18 Histogram of the SiO₂-(CH₂)₃-NAM particle size distribution. Mean diameter = 767±137 nm (for 101 particles)

6. TEM images and EDX analysis

Figure S19 HAADF-STEM images of pristine SiO_2 and FFT of A-B (Pore size measured determined by FFT = 1.4 nm).

Figure S20HAADF-STEM images of SiO₂-APTES (A-C) and FFT of C. (Pore size measured determined by FFT = 3.5 nm).

Figure S21 EDX element quantification of SiO₂-APTES.

Figure S22 HAADF-STEM images of SiO₂-(CH₂)₃-NAM. (Pore size determined by HAADF-STEM = 3.3 nm)

Figure S23 EDX element quantification of SiO₂-(CH₂)₃-NAM.

Figure S24 HAADF-STEM images of RhNPs-A. (no functionalization)

Figure S26 EDX element quantification of RhNPs-A. (no functionalization)

Figure S27 HAADF-STEM images of RhNPs-B.

Figure S28TEM images magnification and histogram of the RhNPs-B particle size distribution. Mean diameter = 3.2±0.5 nm (for 100 particles)

Figure S30 EDX element quantification of RhNPs-B.

Figure S31 HR-HAADF-STEM of one Rh nanoparticle in RhNPs-B.

Figure S32 HAADF-STEM images of RhNPs-C

Figure S33 TEM images magnification and histogram of the RhNPs-C particle size distribution. Mean diameter = 2.3±0.3 nm (for 112 particles)

Figure S34 EDX element mapping images of RhNPs-C.

Figure S35 EDX element quantification of RhNPs-C.

Figure S36 HR-HAADF-STEM of Rh nanoparticles in RhNPs-C.

7. BET isotherms of supported RhNPs.

Figure S37 Adsorption-desorption isotherms of SiO₂-APTES with pore size.

Figure S38 Pore size of I) RhNPs-B and II) RhNPs-C

Table S5 BFT	isotherms ana	vsis of su	oported RhNPs	on functionalized silicas.
10010 00 00	loouno una	,010 01 00		

Entry	Material	S _{вет} (m² g ⁻¹)	Pore width (nm)
1	SiO ₂ -APTES	424	2.09 ^a
2	RhNPs-A	n.d.	n.d.
3	RhNPs-B	16	2.09 ^b
4	RhNPs-C	9	1.66 ^b

^a Calculated using Brunauer–Emmett– Teller (BET) model on the adsorption branch in the range of relative pressure (P/Po) from 0.06 to 0.196.. ^b Calculated using the Non-Local Density Functional Theory model (Tarazona NLDFT, Cylindrical Pores, Esf = 30.0K).

8. Selected catalytic experiments

Table S6 Substrates that are not susceptible to hydrogenation by RhNPs-B at low pressure.

Entry	Substrate	Main Product	Conversion (%) ^a	Sel. to main product (%) ^a
1	0 12a	OH 12b	1	N.D.
2	13	13a	0	N.D.
3	6 14	0H 14a	0 (0 ^b)	N.D.
4	15 NO ₂	M ₈ NH₂ 15a	0	N.D.

Reaction conditions: 2 mmol of substrate, 5 mg of **RhNPs-B** (0.07 mol%), H₂ (5 bar), 2 mL of **toluene**, 100 °C. ^a Determined by GC using FID detector. ^b Using **RhNPs-B** or **RhNPs-C** at 40 bar of H₂ no conversion are observed.

		O ⊦ ∥ Rh	H₂ Nps	OH 	<u>ОН</u> 		o II		
		Solvent	→ t 100 °C	+		+			
	7		7	/	Zh	7	0		
	,		1	a	70	0/	Coloctivity	a	
Entry	Catalyst	Substrate 7 (mmol)	Time(h)	Solvent	%Conv. ª	7a	7b	7c	TOF (h ⁻¹) ^b
1	Pristine SiO ₂	2	2	toluene	0	-	-	-	0
2	SiO ₂ -APTES	2	2	toluene	0	-	-	-	0
3	RhNPs-A	2	2	toluene	10	80	0	20	48
4	RhNPs-B	2	2	toluene	98	81	8	11	560
5	RhNPs-C	2	2	toluene	81	93	5	2	219
6	RhNPs-B	1	1	toluene	62	89	1	10	389
7	RhNPs-B	2	1	toluene	64	91	1	2	822
8	RhNPs-B	5	1	toluene	42	95	0	5	1408
9	RhNPs-B	10	1	toluene	17	94	0	6	1128
10	RhNPs-B	1	2	toluene	99	64	21	15	223
11	RhNPs-B	2	2	DMC	48	85	0	15	288
12	RhNPs-B	2	2	H_2O	88	94	1	5	584
13	RhNPs-B	2	2	glycerol	38	97	0	3	260
14	RhNPs-B	2	2	EtOH	84	88	7	5	521
15	RhNPs-B	2	2	heptane	64	97	2	1	438
16	RhNPs-C	2	2	heptane	>99	70	23	5	493

Table S7 Optimization of reaction conditions at low pressure of the catalyzed hydrogenation of acetophenone.

Reaction conditions: 2 mmol of acetophenone (7), 5 mg of catalyst [RhNPs-A (0.10 mol%); RhNPs-B (0.07 mol%); RhNPs-C (0.18 mol%)], H_2 (5 bar), 100 °C. ^a Determined by GC using FID detector. ^b TOF= mmol of principal product x (mmol of Rh x h)⁻¹

Table S8 RhNPs-B catalyst reuse in the hydrogenation of cyclohexene in toluene.

Run	Conversion (%) ^a	TOF (h ⁻¹) °
1	99	705
2	99	705
3	99	705
4	99	705
5	99	705

Reaction conditions: 2 mmol of cyclohexene (2), 5 mg of **RhNPs-B** (0.07 mol%), 2 mL of **toluene**, H₂ (5 bar), 100 °C, 2h. ^a Determined by GC using FID detector. ^b At the end of each reaction all volatiles are evaporated and collected for GC analysis then new acetophenone and toluene are added. ^c TOF= mmol of principal product x (mmol of Rh x h)⁻¹

Table S9 RhNPs-C catalyst reuse in the hydrogenation of cyclohexene in heptane.

Reaction conditions: 2 mmol of cyclohexene (2), 5 mg of **RhNPs-C** (0.07 mol%), 2 mL of **heptane**, H₂ (5 bar), 100 °C, 2h. ^a Determined by GC using FID detector. ^b At the end of each reaction all volatiles are evaporated and collected for GC analysis then new acetophenone and heptane are added. . ^c TOF= mmol of principal product x (mmol of Rh x h)⁻¹

9. TEM images and EDX analysis after use in the catalyzed acetophenone hydrogenation

Figure S39 HAADF-STEM images of RhNPs-B after acetophenone hydrogenation (40 bar).

Figure S40 EDX element mapping images of RhNPs-B after acetophenone hydrogenation (40 bar).

Figure S41 EDX element quantification of RhNPs-B after acetophenone hydrogenation (40 bar).

Figure S42 HAADF-STEM images of RhNPs-C after acetophenone hydrogenation (40 bar).

Figure S43 TEM image magnification and histogram of the RhNPs-C particle size distribution after acetophenone hydrogenation (40 bar). Mean diameter = 2.3±0.3 nm (for 100 particles)

Figure S44 EDX element mapping images of RhNPs-C after acetophenone hydrogenation (40 bar).

Figure S45 EDX element quantification of RhNPs-C after acetophenone hydrogenation (40 bar).