Supporting Information

Tungsten Oxide: Green and Sustainable Heterogeneous Nanocatalyst for Synthesis of Bioactive Heterocyclic Compounds

T. A. J. Siddiqui^a, Shoyebmohamad F. Shaikh^{b*}, Balaji B. Totawar^c, Madhuri Dumpala^d, Mohd Ubaidullah^b, Badr M. Thamer^b, Rajaram S. Mane^{a*}, and Abdullah M. Al-Enizi^b

^aSchool of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431606, M.S., India ^bDepartment of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia ^cDepartment of Chemistry, SMT. G. G. Khadse College, Muktainagar, Jalgaon, 425306, India ^dDepartment of Physics, Osmania University College for Women, Koti, Hyderabad, 50095, India.

*Corresponding Authors: Shoyebmohamad F. Shaikh <u>(sshaikh1@ksu.edu.sa)</u> and Rajaram S. Mane (<u>rajarammane70@srtmun.ac.in</u>)

General procedure for the WO₃ catalysed reaction for C-3 Alkylation of 4

hydroxycoumarin

In a dry round bottom flask WO₃ (10 mol%), secondary benzyl alcohol (1mmol), 4hydroxycoumarin (1mmol) were mixed and the reaction mixture was stirred at 100°C for specified time (see **Table 2**). The progress of the reaction was monitored by TLC. After the completion of reaction, the reaction mixture was dissolved in ethanol and boiled. The undissolved WO₃ catalyst was separated by simple filtration method. The filtrate was cooled down to 0-5 °C to precipitate the desired product which was separated again by simple filtration method. The obtained product was washed 2-3 times by ethanol to afford corresponding pure product.

General procedure for the heterogeneous WO_3 catalysed multicomponent reaction for synthesis of chromenes

In a dry round bottom flask, WO₃ (10 mol%), Dimedone (1mmol), aromatic aldehyde (1mmol) and malanonitrile (1mmol) were mixed and stirred at 70°C for specified time (Table 3). The progress of the reaction was monitored by TLC. After the completion of reaction, the reaction mixture was dissolved in ethanol and boiled. The undissolved WO₃ catalyst was separated by simple filtration method. The filtrate was cooled down to 0-5°C to precipitate the desired product which was separated again by simple filtration method. The obtained product was washed 2-3 times by ethanol to afford corresponding pure product.

General procedure for the heterogeneous WO₃ catalysed reaction for synthesis of xanthene

In a dry round bottom flask, WO₃ (10 mol%), Dimedone (1mmol), aromatic aldehyde (1mmol) were mixed and stirred at 70°C, for specified time (Table 4). The progress of the reaction was monitored by TLC. After the completion of reaction, the reaction mixture was dissolved in ethanol and boiled. The undissolved WO₃ catalyst was separated by simple filtration method. The filtrate was cooled down to 0-5°C to precipitate the desired product which was separated again by simple filtration method. The obtained product was washed 2-3 times by ethanol to afford corresponding pure chromene derivatives.

Table S1: Comparative catalysts activity study of WO₃ NRs with commercially available WO₃ for C-3 Alkylation of 4-hydroxycoumarin derivative 3a.

Sr.	Catalyst (10	Solvent	Temp. (°C)	Time	Yield ^b
No.	mol%)			(min)	(%)
1	Commercial WO ₃	Solvent free	Heat (100 °C)	60	94
2	WO NDa	Solvent free	Least (100 °C)	70	02
2	WO3 INPS	Solvent free	Heat (100 C)	70	92
3	WO ₃ Nanospheres	Solvent free	Heat (100 °C)	75	93
4	WO ₃ Nanorods	Solvent free	Heat (100 °C)	60	95

^aReaction conditions: 4-hydroxycoumarin (100 mg), Secondary benzyl Alcohol (1 equivalent), different forms of WO₃ (10 mol%), with continuous stirring under thermal condition, solvent free, ^bIsolation yield.

Sr.	Cat (mol.%)	Solvent	Temp	Time	Yield^b	ref	
no.			(°C)	(h)	(%)		
1	Bi(OTf) ₃ (1)	MeNO ₂	90	4	85	1	
2	$BiCl_{3}(1)$	MeNO ₂	90	7	30	1	
3	$BiBr_{3}(1)$	MeNO ₂	90	7	10	1	
4	TfOH (3)	MeNO ₂	90	4	70	1	
5	I ₂ (20)	MeNO ₂	50	3	75	2	
6	Bi(NO ₃) ₃ .5H ₂ O (10)	[BMIM][PF ₆]	30	1	90	3	
7	Amberlite IR 120 (50 mg)	CH ₃ CN	Reflux	1.5	73	4	
8	$A-TiO_2(20 \text{ mg})$	Solvent free	70	5	95	5	
9	$SO_4^{-}/SnO_2(10 \text{ mg})$	CH ₃ COOH	Reflux	5	75	6	

Table S2: Assessment of reported catalysts catalytic activity with WO₃ NRs for C-3 Alkylation of 4-hydroxycoumarin.

10	WO ₃ (10 mol %)	Solvent free	100	1	95	This
						work

^aReaction conditions: 4-hydroxycoumarin (100 mg), Secondary benzyl Alcohol (1 equivalent), different catalysts, with continuous stirring under thermal condition, solvent free, ^bIsolation yield.

Table S3: Assessment of reported catalysts other than WO_3 NRs for the synthesis of chromenes.

Entry	Catalyst	Catalyst	Solvent	Temp.	Time	Yield ^b	Ref.
		loading		(°C)	(Min)	(%)	
1	No catalyst	-	EtOH:H ₂ 0	Reflux			
2	ZnO NPs	10 mol%	EtOH	Reflux	20	83	7
3	Urea	10 mol%	EtOH:H ₂ 0	Reflux	480	85	8
4	Na ₂ CO ₃	10 mol%	EtOH:H ₂ 0	120	100	95	9
5	Aq PEG-400	1ml	EtOH:H ₂ 0	Reflux	180	85	10
6	Cerium	10 mol%	EtOH:H ₂ 0	Reflux	80	83	11
	(III)chloride						
7	Piperidine		H ₂ 0	Reflux	380	75	12
8	S-Proline	10 mol%	EtOH:H ₂ 0	Reflux	180	80	13
9	CuO NPs	15 mol%	H ₂ 0	100	420	90	14
10	DBSA		H ₂ 0		280	92	15
11	TBAF	10 mol%	H ₂ 0	Reflux	55	93	16
12	I_2	10 mol%	DMSO	120	250	82	17
13	DMAP		EtOH		180	75	18
14	Lactose		EtOH:H ₂ 0		30	65	19
15	CaHPO ₄	10 mol%	EtOH:H ₂ 0	80	150	88	20
16	TBAB	10 mol%	H ₂ 0	reflux	100	85	21

17	POPINO	7.5 mol%	H ₂ 0	reflux	70	90	22
18	Starch	4ml	No solvent	50	80	95	23
	solution						
19	AP-SiO ₂		H ₂ 0	70	150	89	24
20	WO ₃	10 mol%	EtOH:H ₂ 0	reflux		97	This
							work
21	WO ₃	10 mol%	Solvent free	70		97	This
							work

^aReaction conditions: Dimedone (100 mg), benzaldehyde (1 equivalent), malononitrile (1 equivalent), WO₃ NRs, different catalysts with continuous stirring at 70°C, ^bIsolation yield.

Table S4: Assessment of reported catalysts in addition to WO_3 NRs for the synthesis of xanthenes.

Sr.	Catalyst	Solvent	Temp.	Time	Yield ^b	Ref.
no.			(°C)	(h)	(%)	
1	InCl ₃	[bmim]BF ₄	80	5	93	25
2	PANI-PTSA	H ₂ O	Reflux	6	70	26
3	Amberlyst-15	CH ₃ CN	Reflux	5	90	27
4	DABCO-Bromine	H ₂ O	Reflux	2	90	28
5	ZnO NPs (10 mg)	Solvent free	80	1/2	90	29
6	CuO NPs (10 mg)	Solvent free	80	1/2	92	30
7	SmCl ₃ (20 mol%)	Solvent free	120	8	95	31
8	Fe ₃ O ₄ @SiO ₂ -Imid-PMA (30 mg)	EtOH	Reflux	1	92	32
9	I_2	Solvent free	90	2.5	91	33
10	CAN (5 mol%)	2-Propanol	50	1/2	96	34
		(ultrasound)				

11	$CaCl_2$ (20 mol%)	DMSO	90	4	83	35
12	Cu(II)-Fur-APTES/GO (20 mg)	H ₂ O:EtOH	50	1/2	96	36
13	Boric acid (0.5 mol%)	Solvent free	120	1/2	97	37
14	WO ₃	Solvent free	70	1/2	97	This
						wor
						k

^aReaction conditions: benzaldehyde (1 equivalent), Dimedone (2 equivalent) WO₃ NRs (10 mol%), H₂O/EtOH solvent system with continuous stirring at 70°C, ^bIsolation yield.

Plausible reaction mechanism for the formation of chromenes derivatives

It considers the aldehyde–catalyst surface interaction. A plausible first step for the reaction cascade is the thermal energy induced activation of the carbonyl carbon of aromatic aldehyde followed by reaction with Malanonitrile *via* Knoevenagel condensation to form intermediate **I**. After losing water, **I** give intermediate **II**. The enol form of dimedone undergoes Michael addition with intermediate **II** to produce intermediate **III**. Finally, product **V** is formed by intramolecular cyclization of **III** and tautomerization of **IV** (**Scheme S1**).

Scheme S1: Plausible reaction mechanism for the formation of chromenes derivatives.

A plausible reaction pathway for the formation of xanthenes derivatives

WO₃NRs catalysed plausible reaction pathway for the formation of xanthenes **Scheme S2** and considers the aldehyde surface interaction which is believed to be responsible for the absorption of visible light. The first step of the cascade reaction is the light-induced activation of carbonyl carbon of aromatic aldehyde with enol form of dimedone forming the intermediate **I**, this intermediate after losing water gives intermediate **II**. Enol form of second molecule of dimedone undergoes Michael addition with intermediate **II** to form intermediate **III**. Finally, the product **V** was formed by intramolecular cyclization of **III** with subsequent removal of water from **IV**.

Scheme S2: Reaction mechanism for the formation of Xanthenes derivatives.

Fig. S1: XPS survey spectrum of WO₃ NRs.

Fig. S2 Thermal analysis (TGA/DTA) of WO₃ NRs

The TGA/DTA plot confirms that the ammonium paratungstate decomposes through loss of water molecules and the formation of WO₃ could affirm at around 500°C. Based on this information an annealing temperature to produced WO₃ NRs was 500°C.³⁸

¹H-NMR of 4-hydroxy-3-(1-phenylethyl)-2H-chromen-2-one (3a)

¹³C-NMR of 4-hydroxy-3-(1-phenylethyl)-2H-chromen-2-one (3a)

2) ¹H-NMR of3-(1-(4-fluorophenyl)ethyl)-4-hydroxy-2H-chromen-2-one (3b)

¹³C-NMR of3-(1-(4-fluorophenyl)ethyl)-4-hydroxy-2H-chromen-2-one (3b)

3) ¹H-NMR of 3-benzhydryl-4-hydroxy-2H-chromen-2-one (3c)

¹³C-NMR of 3-benzhydryl-4-hydroxy-2H-chromen-2-one (3c)

4) ¹H-NMR of 3-(bis(4-fluorophenyl)methyl)-4-hydroxy-2H-chromen-2-one (3d)

¹³C-NMR of 3-(bis(4-fluorophenyl)methyl)-4-hydroxy-2H-chromen-2-one (3d)

5) ¹H-NMR of4-hydroxy-3-(1-(4-methoxyphenyl)ethyl)-2H-chromen-2-one (3e)

¹³C-NMR of 4-hydroxy-3-(1-(4-methoxyphenyl)ethyl)-2H-chromen-2-one (3e)

6) ¹H-NMR of 2-amino-7,7-dimethyl-5-oxo-4-phenyl-5,6,7,8-tetrahydro-4H-chromene-3-

carbonitrile (7a)

7) ¹H-NMR of 2-amino-4-(4-methoxyphenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4Hchromene-3-carbonitrile (7b)

8)¹H-NMR of 2-amino-4-(4-bromophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4Hchromene-3-carbonitrile (7C)

9)¹H-NMR of 2-amino-7,7-dimethyl-4-(4-nitrophenyl)-5-oxo-5,6,7,8-tetrahydro-4Hchromene-3-carbonitrile (7d)

10)¹H-NMR of 2-amino-4-(3,4-dimethoxyphenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4Hchromene-3-carbonitrile (7e)

11)¹H-NMR of 2-amino-4-(3-methoxyphenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4Hchromene-3-carbonitrile (7f)

12) ¹H-NMR of 2-amino-4-(3,5-dimethoxyphenyl)-7,7-dimethyl-5-oxo-5,6,7,8-

tetrahydro-4H-chromene-3-carbonitrile (7g)

13) ¹H-NMR of 2-amino-4-(3-bromophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-

4H-chromene-3-carbonitrile (7h).

14) ¹H-NMR of 2-amino-4-(4-fluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-

chromene-3-carbonitrile (7i)

15)¹H-NMR of 2-amino-7,7-dimethyl-5-oxo-4-(3,4,5-trimethoxyphenyl)-5,6,7,8-

tetrahydro-4H-chromene-3-carbonitrile (7j)

16) ¹H-NMR of 9-(2-chlorophenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-

xanthene-1,8(2H)-dione (8a)

17) ¹H-NMR of 9-(2,4-dichlorophenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-

xanthene-1,8(2H)-dione (8b)

18) ¹H-NMR of 9-(4-chlorophenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-

xanthene-1,8(2H)-dione (8c)

19) ¹H-NMR of9-(4-bromophenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-

1,8(2H)-dione (8d)

20) ¹H-NMR of 3,3,6,6-tetramethyl-9-(3-nitrophenyl)-3,4,5,6,7,9-hexahydro-1H-

21)¹H-NMR of 3,3,6,6-tetramethyl-9-p-tolyl-3,4,5,6,7,9-hexahydro-1H-xanthene-

1,8(2H)-dione (8f)

22) ¹H-NMR of 3,3,6,6-tetramethyl-9-(2,3,4-trimethoxyphenyl)-3,4,5,6,7,9-hexahydro-

1H-xanthene-1,8(2H)-dione (8g)

23)¹H-NMR of 3,3,6,6-tetramethyl-9-(4-nitrophenyl)-3,4,5,6,7,9-hexahydro-1H-

xanthene-1,8(2H)-dione (8h)

24)¹H-NMR of 3,3,6,6-tetramethyl-9-(3,4,5-trimethoxyphenyl)-3,4,5,6,7,9-hexahydro-

1H-xanthene-1,8(2H)-dione. (8i)

25) ¹H-NMR of 9-(3,4-dimethoxyphenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-

xanthene-1,8(2H)-dione (8j)

References

- [1] M.Rueping, J. B.Nachtsheim, E.Sugiono, Synlett., 2010, 10, 1549–1553...,
- [2] X. Lin, X. Dai, Z. Mao, Y. Wang, Tetrahedron., 2009, 65, 9233–9237.
- [3] G. Aridoss, K. K. Laali, *Tetrahedron Letters.*, 2011, 52, 6859–6864.
- [4] C. R. Reddy, B. Srikanth, N. N. Rao, D. S. Shin., Tetrahedron., 2008, 64, 11666–11672.
- [5]A. M. Al-Enizi, T. A. J. Siddiqui, S. F. Shaikh, M. Ubaidullah, Y. Ayman, R. S. Mane,
- A. H. S. Rana, RSC Adv., 2020,10, 14826-14836.
- [6] V. Narayana, R. Varala, P. Zubaidha, *International Journal of Organic Chemistry*, 2012, 2, 287-294.
- [7] S. Zavar, Arabian J. Chem., 2017, 10, S67.

- [8] G. Brahmachari, B. Banerjee, ACS Sustainable Chem. Eng., 2014, 2, 411.
- [9] M. R. N. jamal, S. Mashkouri, A. Sharifi, Mol. Divers., 2010, 14, 473-477.
- [10] C. W. Lu, J. J. Wang, F. Li, S. J.Yu, Res. Chem. Intermed. 2018, 44, 1035.
- [11] G. Sabitha, K. Arundhati, K. Sudhakar, B. S. Sastri, J. S. Yadav, *Synth. Commun.*, 2009, 39, 433–442.
- [12] I. A. Azath, P. Puthiaraj, K. Pitchumani, ACS Sustainable Chem. Eng., 2013, 1, 174–179.
- [13] S. Abdolmohammadi, S. Balalaie, Tetrahedron Lett., 2007, 48, 3299.
- [14] H. Mehrabi, M. K. Mireki, Chin. Chem. Lett., 2011, 22, 1419.
- [15] E. Sheikhhosseini, D. Ghazanfari, V. Nezamabadi, Iran. J. Catal., 2013, 3, 197-201.
- [16]S. Gao, C.H. Tsai, C. Tseng, C.F. Yao, Tetrahedron., 2008, 64, 9143-9149.
- [17] R.S. Bhosale, C.V. Magar, K.S. Solanke, S.B. Mane, S.S. Choudhary, R.P. Pawar, Synth. Commun., 2007, 37, 4353.
- [18] A. T. Khan, M. Lal, S. Ali, M. M. Khan, Tetrahedron Lett., 2011, 52, 5327-5332
- [19] F. N. Sadeh, M. T. Maghsoodlou, N. Hazeri, M. Kangani, *Res. Chem. Intermed.*, 2015, 41, 5907–5914.
- [20] M. A. Bodaghifard, M. Solimannejad, S. Asadbegi, S. Dolatabadifarahani, *Res. Chem. Intermed.*, 2016, *42*, 1165.
- [21] A. Mobinikhaledi, M. A. BodaghiFard, ActaChimicaSlovenica., 2010, 57, 931-935.
- [22] M. G. Dekamin, M. Eslami, A. Maleki, Tetrahedron., 2013, 69, 1074-1085.
- [23] N. Hazeri, M. T. Maghsoodlou, F. Mir, M. Kangani, H. Saravani, E. Molashahi, *Chinese Journal of Catalysis.*, 2014, 35, 391-395.
- [24] V. M. Joshi, R. L. Magar, P. B. Throat, S.U. Tekale, B. R. Patil, M. P. Kale, R. P. Pawar, *Chinese Chemical Letters.*, 2014, 25, 455-458.
- [25] X. Fan, X. Hu, X. Zhang, Can. J. Chem., 2005, 83, 16.
- [26] G. Casiraghi, G. Casnati, M. Catellani, M. Corina, Synthesis., 1974, 8, 564.

- [27] B. Das, P. Thirupathi, I. Mahender, J. Mol. Catal. A: Chem., 2006, 247, 233.
- [28] M. Bigdeli., Chinese Chemical Letters., 2010, 21, 1180-1182.
- [29] J. Safaei-Ghomi and M. A. Ghasemzadeh, Chinese Chem. Lett., 2012, 23, 1225-1229.
- [30] G. R. Chaudhary, P. Bansal, N. Kaur, S.K. Mehta, RSC Adv., 2014,4, 49462-49470.
- [31] A.Ilangovan, S.Malayappasamy, S. Muralidharan1 and S.Maruthamuthu., *Chem Cent J.*, 2011, 5, 81.
- [32] M.Esmaeilpour, J.Javidi, F.Dehghani, F. N.Dodeji., New J. Chem., 2014, 38, 5453-5461.
- [33] B. Das, Ravikanth, R.Ramu, K. Laxminarayana, B. V. Rao, *MolCatalA Chem.*, 2006, 255, 74-77.
- [34] N. Mulakayala, G. P. Kumar, D. Rambabu, M. Aeluri, M. V. B. Rao, M. Pal., *Tetrahedron Letters.*, 2012, 53, 6923–6926.
- [35] A. Ilangovan, S. Muralidharan, P. Sakthivel, S. Malayappasamy, S. Karuppusamy, M. P. Kaushik, *Tetrahedron Lett.*, 2013, 54, 491–494.
- [36] Subodh, N. K. Mogha, K. Chaudhary, G. Kumar, D. T. Masram., ACS Omega., 2018, 3, 16377–16385.
- (37) S. Rezayati, R. Hajinasiri, Z. Erfani, S. Rezayati, S. Afsharisharifabad, *Iran. J. Catal.*, 2014, 4, 157–162.
- (38) G. V. Kunte, U. Ail, S. A. Shivashankar A. M. Umarji, Bull. Mater. Sci., 2005, 28, 243– 248.