Supporting Information

Synthesis, Crystal Structure and Magnetic Properties of a P-Stereogenic Ortho-(4-amino-tempo)Phosphinic Amide Radical and its Cu^{II} Complex

Yolanda Navarro,^a Guilherme P. Guedes,^b Miguel A. del Águila-Sánchez,^a María José Iglesias,^a Francisco Lloret^c and Fernando López-Ortiz^a

^aÁrea de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.

^bUniversidade Federal Fluminense, Instituto de Química, Departamento de Química Inorgânica, Outeiro de São João Batista, s/n, Niterói, Rio de Janeiro, Brazil.

^cInstituto de Ciencia Molecular (ICMol) / Departamento de Química Inorgánica, Universidad de Valencia, C/ Catedrático José Beltrán, 2, 46980 Paterna, Valencia, Spain.

Contents.

Figure S1: ¹ H NMR spectrum of compound 10
Figure S2: ³¹ P{ ¹ H} NMR spectrum of compound 10
Figure S3: ¹ H NMR spectrum in the presence of PhNHNH ₂ of compound 10
Figure S4: ³¹ P{ ¹ H} NMR spectrum in the presence of PhNHNH ₂ of compound 10 S4
Figure S5: ¹ H and ¹ H{ ³¹ P} NMR spectra of compound 11
Figure S6: ³¹ P{ ¹ H} NMR spectrum of compound 11
Figure S7: DEPT-135 and ¹³ C{ ¹ H} NMR spectra of compound 11
Figure S8: ¹ H NMR spectrum of compound 13
Figure S9: ³¹ P{ ¹ H} NMR spectrum of compound 13
Figure S10: ¹ H NMR spectrum in the presence of PhNHNH ₂ of compound 13S7
Figure S11: ${}^{31}P{}^{1}H$ NMR spectrum in the presence of PhNHNH ₂ of compound 13S8
Figure S12: ¹ H and ¹ H $\{^{31}P\}$ NMR spectra of compound 14
Figure S13: ³¹ P{ ¹ H} NMR spectrum of compound 14
Figure S14: DEPT-135 and ${}^{13}C{}^{1}H$ NMR spectra of compound 14
Figure S15: ¹ H NMR spectrum of compound 15
Figure S16: ³¹ P{ ¹ H} NMR spectrum of compound 15
Figure S17: ¹ H and ¹ H $\{^{31}P\}$ NMR spectra of compound 16
Figure S18: ³¹ P{ ¹ H} NMR spectrum of compound 16

Figure S19: ¹ H and ¹ H{ ³¹ P} NMR spectra of compound 17S12
Figure S20: ³¹ P{ ¹ H} NMR spectrum of compound 17
Figure S21: DEPT-135 and ¹³ C NMR spectra of compound 17
Figure S22: ¹ H NMR spectrum of compound 18
Figure S23: ³¹ P{ ¹ H} NMR spectrum of compound 18
Table S1: Summary of the crystal structure, data collection and refinement parameters for 10 and 19 S15
Figure S20 : Thermal ellipsoids of the asymmetric unit of compound 10 drawn at 50% of probability level. Hydrogen atoms were omitted for clarity
Figure S21 : Thermal ellipsoids of the asymmetric unit of compound 19 drawn at 50% of probability level. Hydrogen atoms were omitted for clarity

Figure S1. ¹H NMR spectrum (300.13 MHz) of compound **10**.

Figure S2. ${}^{31}P{}^{1}H$ NMR spectrum (121.50 MHz) of compound 10.

Figure S3. ¹H NMR spectrum (300.13 MHz) in the presence of PhNHNH₂ of compound 10.

Figure S4. ${}^{31}P{}^{1}H$ NMR spectrum (121.50 MHz) in the presence of PhNHNH₂ of compound 10.

Figure S5. 1 H (a) and 1 H { 31 P} (b) NMR spectra (300.13 MHz) of compound 11.

Figure S6. ${}^{31}P{}^{1}H$ NMR spectrum (121.50 MHz) of compound 11.

Figure S7. DEPT-135 (a) and ${}^{13}C{}^{1}H$ (b) NMR spectra (75.47 MHz) of compound 11.

Figure S8. ¹H NMR spectrum (300.13 MHz) of compound 13.

Figure S9. ${}^{31}P{}^{1}H$ NMR spectrum (121.50 MHz) of compound 13.

Figure S10. ¹H NMR spectrum (300.13 MHz) in the presence of PhNHNH₂ of compound 13.

Figure S11. ³¹P{¹H} NMR spectrum (121.50 MHz) in the presence of PhNHNH₂ of compound 13.

Figure S12. 1 H (a) and 1 H{ 31 P} (b) NMR spectra (300.13 MHz) of compound 14.

Figure S13. ${}^{31}P{}^{1}H$ NMR spectrum (121.50 MHz) of compound 14.

Figure S14. DEPT-135 (a) and ${}^{13}C{}^{1}H{}$ (b) NMR spectra (75.47 MHz) of compound 14.

Figure S15. ¹H NMR spectrum (300.13 MHz) of compound 15.

Figure S16. ³¹P{¹H} NMR spectrum (121.50 MHz) of compound 15.

Figure S17. 1 H (a) and 1 H{ 31 P} (b) NMR spectra (300.13 MHz) of compound 16.

Figure S18. ${}^{31}P{}^{1}H$ NMR spectrum (121.50 MHz) of compound 16.

Figure S19. ¹H (a) and ¹H $\{^{31}P\}$ (b) NMR spectra (300.13 MHz) of compound 17.

Figure S20. ${}^{31}P{}^{1}H$ NMR spectrum (121.50 MHz) of compound 17.

Figure S21. DEPT-135 (a) and ${}^{13}C{}^{1}H{}$ (b) NMR spectra (75.47 MHz) of compound 17.

Figure S22. ¹H (a) NMR spectrum (300.13 MHz) of compound 18.

Figure S23. ${}^{31}P{}^{1}H$ NMR spectrum (121.50 MHz) of compound 18.

Compound reference	10	19
Chemical formula	$C_{27}H_{41}N_3O_2P$	$C_{44}H_{51}CuF_{12}N_3O_6P$
Formula Mass	470.60	1040.40
Crystal system	Orthorhombic	Orthorhombic
$a/{ m \AA}$	8.3792(2) Å	14.6129(3)
$b/{ m \AA}$	17.0809(4) Å	15.1415(4)
$c/{ m \AA}$	18.6707(4) Å	21.6411(5)
α/°	90	90
$eta\!$	90	90
$\gamma/^{\circ}$	90	90
Unit cell volume/Å ³	2672.23(11)	4788.34(19)
Temperature/K	100(2)	100(2)
Space group	P 2 ₁ 2 ₁ 2 ₁	$P 2_1 2_1 2_1$
No. of formula units per unit cell, Z	4	4
Radiation type	СиКа	CuKa
Absorption coefficient, μ/mm^{-1}	1.12	1.81
No. of reflections measured	13459	25077
No. of independent reflections	5437	9753
R _{int}	0.037	0.033
Final R_I values ($I > 2\sigma(I)$)	0.030	0.034
Final $wR(F^2)$ values ($I > 2\sigma(I)$)	0.072	0.081
Final R_1 values (all data)	0.035	0.040
Final $wR(F^2)$ values (all data)	0.075	0.084
Goodness of fit on F^2	1.05	1.03
$\Delta \rho_{max}$ and $\Delta \rho_{min}$, $e Å^{-3}$	0.21 and -0.32	0.46 and -0.30
Flack parameter	0.024(9)	-0.007(9)
CCDC Deposition	2011812	2011813

 Table S1: Summary of the crystal structure, data collection and refinement parameters for 10 and 19.

Figure S20: Thermal ellipsoids of the asymmetric unit of compound **10** drawn at 50% of probability level. Hydrogen atoms were omitted for clarity.

Figure S21: Thermal ellipsoids of the asymmetric unit of compound **19** drawn at 50% of probability level. Hydrogen atoms were omitted for clarity.