Supporting Information

Synthesis of Ni(II)-Mn(II) complexes using a new mononuclear Ni(II) complex of an N₂O₃ donor unsymmetrical ligand: structures, magnetic properties and catalytic oxidase activity

Souvik Maity,¹ Prithwish Mahapatra,¹ Tanmoy Kumar Ghosh,¹ Rosa M. Gomila,² Antonio Frontera³ and Ashutosh Ghosh*¹

1- Department of Chemistry, University College of Science, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India. E-mail: <u>ghosh 59@yahoo.com</u>

2-ServeisCientifico-Tècnics, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), SPAIN.

3-Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), SPAIN.

Fig. S1 ESI-mass spectrum of complex 1.

Fig. S2 ESI-mass spectrum of complex 4.

Fig. S3 ESI-mass spectrum of complex 4 with 3,5-DTBC.

Fig. S4 EPR spectrum of complex 4 with 3,5-DTBC in acetonitrile at 113 K.

Fig. S5 Increase of the absorption band at around 353 nm during H₂O₂ estimation.

Fig. S6 Differential Pulse Voltammograms (DPVs) of complexes **2** (left), **3** (right) and **4** (middle) and the 1:1 mixture of the complexes with 3,5-DTBC in deoxygenated acetronitrile.

Fig. S7 Isothermal magnetizations at 2 K for complex 2.

Fig. S8 Isothermal magnetizations at 2.5 K for complex 3.

Fig. S9 Isothermal magnetizations at 2 K for complex 4.

Fig. S10 High spin (a) and low spin (b) density plots of complex 3.

Scheme S1 Proposed mechanism for catalytic oxidation of 3,5-DTBC to 3,5-DTBQ by complex **4**.

	Complex 2	Complex 3
Ni(1)-O(1)	2.002 (3)	2.008(3)
Ni(1)-O(2)	2.041(3)	2.040(3)
Ni(1)-O(4)	2.194(3)	2.190(3)
Ni(1)–N(1)	2.042(3)	2.040(3)
Ni(1)–N(2)	2.016(4)	2.012(4)
Ni(1)–N(3)	2.083(4)	2.096(4)
Mn(1)–O(1)	2.095(2)	2.087(2)
Mn(1)–O(2)	2.159(3)	2.160(3)
Mn(1)–O(3)	2.397(3)	2.427(3)
O(1)-Ni(1)-O(2)	77.61(10)	77.54(10)
O(1)–Ni(1)–O(4)	89.10(11)	89.34(12)
O(1)-Ni(1)-N(1)	90.61(12)	90.90(12)
O(1)-Ni(1)-N(2)	169.31(12)	170.11(13)
O(1)-Ni(1)-N(3)	94.26(13)	93.44(14)
O(2)-Ni(1)-O(4)	90.51(11)	89.33(11)
O(2)–Ni(1)–N(1)	167.02(13)	166.90(13)
O(2)–Ni(1)–N(2)	92.58(12)	92.63(13)
O(2)–Ni(1)–N(3)	97.11(12)	96.21(14)
O(4)–Ni(1)–N(1)	83.82(13)	84.35(13)
O(4)-Ni(1)-N(2)	86.75(13)	89.51(14)
O(4)–Ni(1)–N(3)	172.18(13)	174.22(14)
N(1)-Ni(1)-N(2)	98.72(14)	98.76(15)
N(1)-Ni(1)-N(3)	89.08(14)	90.54(15)
N(2)-Ni(1)-N(3)	91.11(15)	88.61(15)
O(1)-Mn(1)-O(2)	73.09(10)	73.26(10)
O(1)-Mn(1)-O(3)	69.23(10)	68.79(10)

 Table S1 Selected bond lengths (Å), bond angles (°) of complexes 2 and 3.

O(1)-Mn(1)-O(1) ^a	162.95(11)	161.23(11)
O(1)-Mn(1)-O(2) ^a	116.97(10)	118.03(10)
O(1)-Mn(1)-O(3) ^a	97.34(10)	96.32(10)
O(2)-Mn(1)-O(3)	140.62(9)	140.55(10)
O(1) ^a -Mn(1)-O(2)	116.97(10)	118.03(10)
O(2)-Mn(1)-O(2) ^a	113.48(10)	112.22(11)
O(2)-Mn(1)-O(3) ^a	93.80(10)	95.06(10)
O(1) ^a -Mn(1)-O(3)	97.34(10)	96.32(10)
O(2) ^a -Mn(1)-O(3)	93.80(10)	95.06(10)
O(3)-Mn(1)-O(3) ^a	80.18(9)	79.00(9)
O(1) ^a –Mn(1)–O(2) ^a	73.09(10)	73.26(10)
O(1) ^a –Mn(1)–O(3) ^a	69.23(10)	68.79(10)
O(2) ^a -Mn(1)-O(3) ^a	140.62(9)	140.55(10)
Ni(1)-O(1)-Mn(1)	106.49(12)	106.39(12)
Ni(1)-O(2)-Mn(1)	102.81(11)	102.61(12)

^a = 1-x,y,3/2-z for complex **2**

1/2-x,1/2-y,z for complex **3**

 Table S2 Selected bond lengths (Å), bond angles (°) of complex 4.

	Complex4
Ni(1)-O(1)	1.992(2)
Ni(1)–O(2)	2.090(2)
Ni(1)-O(3)	2.181(3)
Ni(1)–N(1)	2.042(3)
Ni(1)–N(2)	1.994(3)
Ni(1)-N(3) ^a	2.155(3)
Mn(1)–O(1)	2.108(2)
Mn(1)–O(2)	2.251(2)
Mn(1)–O(3)	2.331(2)

Mn(1)–N(3)	2.150(3)
Mn(1)–N(6)	2.174(4)
Mn(1)–O(2) ^a	2.317(2)
O(1)-Ni(1)-O(2)	80.12(8)
O(1)-Ni(1)-O(4)	82.99(10)
O(1)–Ni(1)–N(1)	90.20(13)
O(1)-Ni(1)-N(2)	169.74(10)
O(1)-Ni(1)-N(3) ^a	94.87(11)
O(2)-Ni(1)-O(4)	88.83(9)
O(2)-Ni(1)-N(1)	169.66(12)
O(2)-Ni(1)-N(2)	91.38(9)
O(2)-Ni(1)-N(3) ^a	81.95(9)
O(4)-Ni(1)-N(1)	93.61(12)
O(4)-Ni(1)-N(2)	91.16(12)
O(4)-Ni(1)-N(3) ^a	170.76(10)
N(1)-Ni(1)-N(2)	98.60(13)
N(1)-Ni(1)-N(3) ^a	95.38(12)
N(2)-Ni(1)-N(3) ^a	89.58(13)
O(1)-Mn(1)-O(2)	74.08(8)
O(1)-Mn(1)-O(3)	70.66(8)
O(1)-Mn(1)-N(3)	164.73(11)
O(1)-Mn(1)-N(6)	96.33(12)
O(1)-Mn(1)-O(2) ^a	88.57(8)
O(2)-Mn(1)-O(3)	144.65(8)
O(2)-Mn(1)-N(3)	109.83(10)
O(2)-Mn(1)-N(6)	93.50(12)
O(2)-Mn(1)-O(2) ^a	87.87(8)
O(3)-Mn(1)-N(3)	103.65(10)

O(3)-Mn(1)-N(6)	92.71(12)
O(2) ^a -Mn(1)-O(3)	88.87(8)
N(3)-Ni(1)-N(6)	98.13(13)
O(2) ^a -Mn(1)-N(3)	77.00(10)
O(2) ^a -Mn(1)-N(6)	175.11(11)
Ni(1)-O(1)-Mn(1)	106.23(9)
Ni(1)-O(2)-Mn(1)	98.08(8)
Ni(1) ^a –N(3)–Mn(1)	100.80(12)
Mn(1)-N(6)-N(7)	127.1(3)
1	

a = 1-x, 1-y, 1-z for complex 4

Table S3 Comparison table for catecholase activities by previously reported complexes.

Complexes	k_{cat} (h ⁻¹)	Solvent	References
$[(NiL)_2Mn(NCS)_2]$	104.5	Methanol	53
$[(NiL)_2Mn(NCO)_2]$	77	Methanol	53
$[{NiL(EtOH)}_2Mn(NO_2)_2] \cdot 2EtOH$	25.8	Methanol	53
$[(NiL)_2Mn(N_3)(H_2O)](ClO_4) \cdot H_2O$	984	Methanol	31
$[\{(NiL)_2Mn(H_2O)\}_2(\mu_{1,3}N_3)](ClO_4)_3$	2081	Methanol	31
$[(NiL)_2Mn(N_3)](ClO_4)$	768	Methanol	28
$[(NiL)_2Mn_2(N_3)_2(\mu_{1,1}N_3)_2(CH_3OH)_2]$	1985	Methanol	28
$[\{(NiL)_2Mn\}_2(\mu_{1,3}N_3)(H_2O)]\cdot(CH_3OH).(ClO_4)_3$	2309	Methanol	28
$[(NiL)_2Mn_2(N_3)_2(\mu_{1,1}-N_3)_2(CH_3OH)_2]$	935	Acetonitrile	This work

Table S4 Correlations of magnetic coupling with bridging angle for earlier reported diphenoxido-bridged Ni^{II}–Mn^{II} complexes.

Complex	$J_{\rm Ni-Mn}/\rm cm^{-1}$	Ni-O-Mn	Ref.
		angle/deg	
$[Mn^{II}(Ni^{II}L)_2] \cdot 2CH_3OH$	+9.30	86.38	52
$[Mn^{II}(Ni^{II}L)_2(OAc)_4(H_2O)_2]$	-0.30	102.31	63
[(NiL) ₂ Mn(OCnn) ₂ (CH ₃ OH) ₂]·CH ₃ OH	+1.38	97.24	54
$[(NiL)_2Mn(OPh)_2(CH_3OH)_2][(NiL)_2Mn(OPh)_2Mn($	+0.50	96.43	54

Ph) ₂]·H ₂ O			
[(NiL) ₂ Mn(OSal) ₂ (CH ₃ OH) ₂]·2[NiL]	-0.24	98.51	54
$[(NiL^1)^2Mn(OOCPh)_2(H_2O)_2] \cdot CH_3OH$	-0.60	97.35	51
[(NiL ²) ₂ Mn(OOCPh) ₂ (CH ₃ OH) ₂]·CH ₃ OH	+2.00	97.34	51
$[(NiL^3)_2Mn(OOCPh)_2(H_2O)_2] \cdot CH_3OH$	+1.10	97.27	51
$[(NiL)_2Mn_2(N_3)_2(\mu_{1,1}-N_3)_2(CH_3OH)_2]$	-4.95	102.58	28
[(NiL) ₂ Mn(NCS) ₂ (CH ₃ OH) ₂]·CH ₃ OH	-4.84	104.65	This work
$[(NiL)_2Mn(N(CN)_2)_2(CH_3OH)_2]$ ·CH ₃ OH	-5.23	104.50	This work
$[(NiL)_2Mn_2(N_3)_2(\mu_{1,1}-N_3)_2(CH_3OH)_2]$	-2.20	102.05	This work

Table S5 Atomic spin densities for the HS and LS configuration for polynuclear complexes 2and 3.

Atom	HS	LS	
	2		
Ni	1.74	-1.74	
Mn	4.91	4.90	
01	0.07	-0.03	
02	0.05	-0.03	
3			
Ni	1.77	-1.75	
Mn	4.91	4.91	
01	0.07	-0.03	
02	0.05	-0.03	

 Table S6 Atomic spin densities at for the HS and LS configuration for the three coupling constants of polynuclear complex 4.

Atom	HS	LS
	J_1	
Ni1	1.70	-1.67
Mn1	4.86	4.87
01	0.05	-0.06
02	0.03	-0.04
J_2		

Nil	1.72	-1.75	
Mn1	4.84	4.85	
O2	0.03	-0.07	
N3ª	0.02	-0.03	
J_3			
Mn1	4.86	-4.84	
Mn1 ^a	4.86	4.84	
02	0.04	0.00	
O2ª	0.04	0.00	

ORCA INPUT FILES:

Complex 2:

```
# gosh multispin
#thio complex 3, replaceone Ni by Zn
!B3LYP def2-TZVP RIjk def2/jk UKS grid4
%pal nprocs 4 end
%maxcore 7500
%scf
        MaxIter 900
        brokensym 5,2
end
* xyz 0 8
                                   4.44330000
                                                17.64830000
С
                    5.06120000
С
                    4.37990000
                                   3.59440000
                                                18.53640000
С
                    3.44900000
                                   2.68350000
                                                18.08210000
Η
                    3.00170000
                                   2.13270000
                                                18.68450000
                                   2.59410000
С
                    3.18360000
                                                16.72870000
                                   1.99140000
                    2.54740000
                                                16.42110000
Η
С
                    3.85450000
                                   3.38830000
                                                15.84350000
                    3.67290000
                                   3.31170000
                                                14.93470000
Н
 С
                    4.81970000
                                   4.32660000
                                                16.28440000
                                                15.26570000
С
                                   5.08800000
                    5.51580000
Η
                    5.22060000
                                   4.97310000
                                                14.39240000
С
                    7.06410000
                                   6.48940000
                                                14.21280000
Η
                    7.23370000
                                   5.76270000
                                                13.59390000
Н
                    6.37650000
                                   7.04650000
                                                13.81240000
С
                    8.15920000
                                   7.20880000
                                                14.28180000
Н
                    8.01660000
                                   7.84990000
                                                13.56690000
                                   6.59250000
                                                13.93110000
                    8.81990000
Η
С
                    8.90950000
                                   7.94290000
                                                15.16400000
Н
                    8.73600000
                                   8.88200000
                                                14.99400000
                                   7.78240000
Η
                    9.84510000
                                                14.96430000
С
                    9.46270000
                                   8.36140000
                                                17.37750000
Η
                                   8.94680000
                                                16.96340000
                   10.05590000
 С
                    9.52920000
                                   8.32860000
                                                18.81130000
С
                   10.53380000
                                   9.11640000
                                                19.39840000
Η
                   11.05440000
                                   9.65530000
                                                18.84640000
С
                   10.77790000
                                   9.12820000
                                                20.73080000
Η
                   11.45160000
                                   9.66160000
                                                21.08820000
С
                    9.99670000
                                   8.32040000
                                                21.54840000
```

н	10 16010000	8 30030000	22 46410000
C	8 98640000	7 5/990000	21 02290000
	0.00040000	7.0400000	21.02200000
н	8.4/610000	7.02190000	21.592/0000
C	8.70490000	1.53800000	19.65/60000
С	4.39740000	2.74460000	20.79470000
Н	3.45190000	2.74550000	20.96140000
Н	4.86560000	2.89780000	21.61700000
Н	4.65640000	1.89480000	20.43270000
С	6.04970000	9.34620000	17.70530000
н	6 70170000	9 30880000	18 40940000
и П	5 21200000	9.50000000	19 06140000
п	5.21200000	9.04980000	17 00540000
н	6.34850000	9.95340000	17.02540000
С	9.14640000	3.90990000	16.51800000
H	5.19930000	8.06960000	16.64500000
Mn	6.21720000	5.61650000	20.23300000
Ν	6.49190000	5.90130000	15.42940000
Ν	8.70330000	7.69940000	16.59430000
Ν	8,63760000	4,80620000	17.03140000
Ni	7 30610000	6 39500000	17 23530000
0	5 01020000	5 30590000	19 19250000
0	3.91920000	5.30390000	10.10230000
0	7.09340000	0.00040000	19.19740000
0	4./1950000	3./8310000	19.86020000
0	5.88710000	8.06600000	17.15140000
S	9.86820000	2.63410000	15.81520000
С	7.37310000	4.44330000	22.81770000
С	8.05440000	3.59440000	21.92960000
С	8.98530000	2.68350000	22.38390000
Н	9.43260000	2.13270000	21.78150000
С	9,25070000	2,59410000	23,73740000
н	9 88690000	1 99140000	24 04490000
Ċ	8 57980000	3 38830000	24 62250000
U U	8 76140000	3 31170000	25 53140000
C	7 61460000	1 32660000	24 19170000
c	6 01950000	F 0000000	25,20040000
	7 21270000	1 07210000	25.20040000
п	7.21370000	4.9/310000	20.07300000
C	5.37020000	6.48940000	26.25330000
Н	5.20060000	5.76270000	26.8/220000
Н	6.05780000	7.04650000	26.65360000
С	4.27510000	7.20880000	26.18420000
H	4.41770000	7.84990000	26.89910000
Н	3.61450000	6.59250000	26.53490000
С	3.52480000	7.94290000	25.30210000
Н	3.69830000	8.88200000	25.47200000
Н	2.58920000	7.78240000	25.50170000
С	2.97160000	8.36140000	23.08860000
Н	2.37840000	8.94680000	23.50270000
С	2.90510000	8.32860000	21.65470000
С	1,90050000	9.11640000	21.06770000
н	1 37990000	9 65530000	21 61970000
Ċ	1 65640000	9 12820000	19 73530000
U U	0 98270000	9.66160000	19 37780000
C	2 43760000	9.32040000	19.01760000
11	2.43700000	0.32040000	10.01700000
п	2.2/420000	0.30030000	10.00200000
C	3.44800000	7.54990000	19.44310000
Н	3.95820000	7.02190000	18.8/340000
С	3.72940000	7.53800000	20.80850000
С	8.03690000	2.74460000	19.67140000
Н	8.98240000	2.74550000	19.50460000
Н	7.56870000	2.89780000	18.84910000
Н	7.77790000	1.89480000	20.03340000
С	6.38460000	9.34620000	22.76080000
Н	5.73260000	9.30880000	22.05670000
Н	7.22230000	9.64980000	22.40470000
Н	6.08580000	9.95340000	23.44060000
C	3,28790000	3,90990000	23,94810000
н	7 23510000	8 06960000	23 82100000
N	5 QA2A0000	5 90130000	25 03660000
TN IN	J.94240000 2 72100000	7 60040000	23.03000000
NT N	3./3100000 3.700000	1.03340000	23.0/1/0000
IN Form	3./96/0000	4.80820000	23.434/0000
⊿n	5.12820000	0.39500000	23.23080000
0	0.51510000	5.30590000	22.28360000

0	4.73890000	6.80040000	21.26870000
0	7.71480000	3.78310000	20.60590000
0	6.54730000	8.06600000	23.31470000
S	2.56610000	2.63410000	24.65080000

Complex 4:

```
# gosh multispin
#azidaMn-Mn-Zn2, replace 2 Ni by 2 Zn
!B3LYP def2-TZVP RIjk def2/jk UKS grid4
%pal nprocs 8 end
%maxcore 10000
%scf
        MaxIter 900
        brokensym 5,5
end
* xyz 0 11
С
                     6.55300000
                                   7.82430000
                                                  9.34500000
С
                     7.87230000
                                    8.30600000
                                                  9.21050000
                                    8.41740000
                                                 10.27760000
С
                     8.71520000
Η
                     9.58050000
                                    8.73760000
                                                 10.16370000
С
                     8.25770000
                                    8.04310000
                                                 11.54710000
Η
                     8.82500000
                                    8.10700000
                                                 12.28140000
                                                 11.70870000
 С
                     6.98820000
                                    7.58350000
Н
                     6.69480000
                                   7.35650000
                                                 12.56130000
 С
                     6.10690000
                                    7.44420000
                                                 10.62430000
 С
                     4.78500000
                                    6.95680000
                                                 10.88580000
Н
                     4.57230000
                                    6.83160000
                                                 11.78250000
С
                                    6.23600000
                                                 10.62550000
                     2.55630000
Η
                     2.70270000
                                    5.89410000
                                                 11.52130000
                                                 10.69690000
Н
                     1.97380000
                                    7.00850000
С
                     1.86690000
                                   5.18800000
                                                  9.81870000
 Η
                     2.47590000
                                    4.43970000
                                                  9.72530000
Η
                     1.10560000
                                    4.87450000
                                                 10.33210000
 С
                     1.38610000
                                    5.54310000
                                                  8.48020000
Н
                                                  8.54590000
                     0.84510000
                                    6.34550000
Η
                     0.81380000
                                    4.82960000
                                                  8.15600000
 С
                     2.29010000
                                    5.28890000
                                                  6.33360000
Н
                     1.54250000
                                    4.74840000
                                                  6.22020000
 С
                     3.12310000
                                    5.47350000
                                                  5.15920000
                                    4.67790000
С
                                                  4.03650000
                     2.78370000
 Н
                     2.11130000
                                    4.04120000
                                                  4.11480000
С
                                   4.83110000
                     3.42500000
                                                  2.84360000
Η
                     3.19610000
                                    4.29310000
                                                  2.12020000
С
                     4.39890000
                                    5.77120000
                                                  2.71280000
Η
                     4.82140000
                                    5.88520000
                                                  1.89210000
 С
                     4.76490000
                                    6.55460000
                                                  3.78360000
Н
                     5.44480000
                                    7.18030000
                                                  3.68010000
 С
                     4.13460000
                                    6.42580000
                                                  5.02350000
 С
                                    9.30530000
                                                  7.67590000
                     9.43680000
Η
                     9.50570000
                                   10.07640000
                                                  8.24330000
Н
                     9.48880000
                                    9.57830000
                                                  6.75690000
Η
                    10.15560000
                                    8.69930000
                                                  7.87060000
 С
                     5.04290000
                                    3.68030000
                                                   7.78930000
                                                  8.42190000
Η
                     4.35850000
                                    3.45100000
Η
                     5.83860000
                                    3.17870000
                                                  7.98280000
                                    3.47170000
                                                  6.90190000
Η
                     4.74170000
Mn
                     6.61270000
                                    7.98250000
                                                  6.32910000
Ν
                    3.86410000
                                   6.67160000
                                                10.05810000
Ν
                     2.45160000
                                    5.77400000
                                                  7.49570000
Ν
                     7.37860000
                                    8.76850000
                                                  4.48070000
Ν
                     7.86010000
                                    8.18220000
                                                  3.55540000
                                    7.63750000
Ν
                     8.32030000
                                                  2.66840000
Ν
                                    5.98360000
                                                  6.18560000
                     7.45540000
Ν
                     8.4000000
                                    5.74330000
                                                  5.97710000
                     9.53880000
                                    5.33250000
                                                  5.67360000
Ν
Zn
                    4.05850000
                                   6.82690000
                                                 8.03090000
```

0	5.80520000	7.75580000	8.26260000
0	4 50030000	7 26230000	6 03560000
0	8.19030000	8.65420000	7.90800000
0	5,32360000	5.05720000	7.87820000
H	6 05700000	5 19150000	7 43900000
C	3 73410000	9 58500000	2 99160000
C	2 41480000	9 10330000	3 12610000
C	1 57190000	9.1000000	2 0500000
	1.37190000	8.99190000	2.03900000
п	2 02020000	0.26620000	2.17290000
	1 46210000	9.30020000	0.78930000
п	1.48210000	9.30230000	0.03320000
C	3.29890000	9.82580000	0.62/90000
H	3.59230000	10.05280000	-0.22460000
C	4.18020000	9.96510000	1./1230000
C	5.50210000	10.45250000	1.45080000
H	5.71480000	10.5///0000	0.55420000
С	7.73070000	11.17330000	1.71110000
H	7.58440000	11.51520000	0.81530000
H	8.31330000	10.40080000	1.63970000
С	8.42020000	12.22130000	2.51790000
H	7.81120000	12.96960000	2.61130000
H	9.18150000	12.53480000	2.00450000
С	8.90100000	11.86620000	3.85640000
H	9.44190000	11.06380000	3.79080000
H	9.47330000	12.57970000	4.18060000
С	7.99700000	12.12040000	6.00300000
H	8.74460000	12.66090000	6.11640000
С	7.16400000	11.93580000	7.17750000
С	7.50330000	12.73140000	8.30010000
Н	8.17580000	13.36810000	8.22180000
С	6.86210000	12.57820000	9.49300000
Н	7.09100000	13.11620000	10.21640000
С	5.88820000	11.63810000	9.62380000
Н	5.46570000	11.52410000	10.44460000
С	5.52210000	10.85470000	8.55300000
H	4.84230000	10.22900000	8.65650000
С	6.15240000	10.98350000	7.31320000
С	0.85030000	8.10400000	4.66080000
Н	0.78130000	7.33290000	4.09330000
Н	0.79820000	7.83100000	5.57970000
Н	0.13150000	8.71000000	4.46600000
С	5.24420000	13.72900000	4.54730000
Н	5.92850000	13.95830000	3.91480000
Н	4.44850000	14.23060000	4.35380000
Н	5.54540000	13.93760000	5.43480000
Mn	3.67440000	9.42680000	6.00760000
Ν	6.42290000	10.73770000	2.27860000
N	7.83550000	11.63530000	4.84090000
N	2,90850000	8.64080000	7.85600000
N	2,42690000	9.22710000	8.78120000
N	1 96670000	9 77180000	9 66820000
N	2 83170000	11 42570000	6 15100000
N	1 88710000	11 66600000	6 35950000
N	0 7/830000	12 07680000	6 6630000
-N 7 m	6 22960000	10 58240000	4 30570000
0	J. ZZ000000	9 65350000	4 0740000
0	4.40190000	10 14700000	4.0/400000
0	2 00670000	Q 75510000	0.JUIIUUUU
0	4 96350000	12 35210000	4.42000000
ц	4 2200000	12 2170000	1 00760000
л *	4.23000000	12.21/80000	4.09/00000

ORCA OUTPUT FILES:

Complex 2

*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
*		0				R				С				A		*	
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	

--- An Ab Initio, DFT and Semiempirical electronic structure package ---

***** _ * * * _ # Department of theory and spectroscopy # # Directorship: Frank Neese Max Planck Institute fuer Kohlenforschung # # Kaiser Wilhelm Platz 1 # D-45470 Muelheim/Ruhr # Germany # # All rights reserved _***_ ******

Program Version 4.1.2 - RELEASE -

[...]

_____ BROKEN SYMMETRY MAGNETIC COUPLING ANALYSIS _____ S(High-Spin) = 3.5 <S**2>(High-Spin) = 15.7590 <S**2>(BrokenSym) = 5.7514 E(High-Spin) = -7714.777611 Eh E(BrokenSym) = -7714.778007 Eh E(High-Spin)-E(BrokenSym)= 0.0108 eV 87.027 cm**-1 (ANTIFERROMAGNETIC coupling) _____ | Spin-Hamiltonian Analysis based on H(HDvV) = -2J*SA*SB | -7.10 cm**-1 (from -(E[HS]-E[BS])/Smax**2) | J(1) =1 | J(2) = -5.53 cm**-1 (from -(E[HS]-E[BS])/(Smax*(Smax+1)) | | J(3) = -8.70 cm**-1 (from -(E[HS]-E[BS])/(<S**2>HS-<S**2>BS)) | _____ J(1): (a) A.P. Ginsberg J. Am. Chem. Soc. 102 (1980), 111 (b) L. Noodleman J. Chem. Phys. 74 (1981), 5737 (c) L. Noodleman E.R. Davidson Chem. Phys. 109 (1986), 131 (d) A. Bencini D. Gatteschi J. Am. Chem. Soc. 108 (1980), 5763 J(2) J(3) (e) K. Yamaguchi Y. Takahara T. Fueno in: V.H. Smith (Ed.) Applied Quantum Chemistry. Reidel, Dordrecht (1986), pp 155 (f) T.Soda et al. Chem. Phys. Lett., 319, (2000), 223 TIMINGS _____ Total SCF time: 1 days 22 hours 41 min 49 sec 168109.869 sec Total time 32593.462 sec (19.4%) Sum of individual times

 0.000 sec
 (0.0%)

 0.000 sec
 (0.0%)

 0.000 sec
 (0.0%)

 32593.462 sec
 (19.4%)
 Fock matrix formation Diagonalization Density matrix formation Population analysis
 Initial guess

 0.000 sec (0.0%)

 Orbital Transformation

 0.000 sec (0.0%)
 0.000 sec (0.0%) 0.000 sec (0.0%) Orbital Orthonormalization DIIS solution Grid generation 0.000 sec (0.0%) _____ _____ FINAL SINGLE POINT ENERGY -7714.778007105625 _____ _____

ORCA property calculations Active property flags _____ (+) Dipole Moment _____ ORCA ELECTRIC PROPERTIES CALCULATION _____ Dipole Moment Calculation ... on Quadrupole Moment Calculation ... off ... off Polarizability Calculation ... thio_complex2_Zn_BS52.gbw GBWName Electron density file ... thio_complex2_Zn_BS52.scfp.tmp The origin for moment calculation is the CENTER OF MASS = (11.734695, 11.141024 38.273501) DIPOLE MOMENT _____ Х Y Ζ X Y Z -3.01033 -19.00040 8.17434 2.96791 25.37253 -8.17120 Electronic contribution: Nuclear contribution : Total Dipole Moment : -0.04242 6.37213 0.00314 -----_____ Magnitude (a.u.) : 6.37227 Magnitude (Debye) : 16.19703 6.37227 _____ Rotational spectrum _____
 Rotational constants in cm-1:
 0.001947
 0.001106
 0.001099

 Rotational constants in MHz :
 58.359760
 33.166680
 32.959921
 Dipole components along the rotational axes: x,y,z [a.u.]: 0.028412 0.022929 -6.372169 x,y,z [Debye]: 0.072218 0.058282 -16.196768 x,y,z [Debye]: Timings for individual modules:
 Sum of individual times
 ...
 168174.647 sec (=2802.911 min)

 GTO integral calculation
 ...
 10.308 sec (= 0.172 min)
 0.0 %

 SCF iterations
 ...
 168164.339 sec (=2802.739 min)
 100.0 %
 SCF iterations ... 108104.005 Sec (Letter the sec (Letter the sec) and the sec) and the sec (Letter the sec) and the sec) TOTAL RUN TIME: 1 days 22 hours 42 minutes 56 seconds 982 msec **Complex 4** ***** * 0 R C A * --- An Ab Initio, DFT and Semiempirical electronic structure package ---***** # _ * * * _ Department of theory and spectroscopy

18

#

#

Directorship: Frank Neese Max Planck Institute fuer Kohlenforschung # # # Kaiser Wilhelm Platz 1 # D-45470 Muelheim/Ruhr # # Germanv # # All rights reserved # * * * ***** $[\cdot \cdot \cdot]$ Program Version 4.2.1 - RELEASE -_____ BROKEN SYMMETRY MAGNETIC COUPLING ANALYSIS ------= 5.0 S(High-Spin) <S**2>(High-Spin) = 30.0157 <S**2>(BrokenSym) = 5.0124

 CS^2/(Blokensym)
 0.012

 E(High-Spin)
 = -8811.595969

 E(BrokenSym)
 = -8811.596205

 E(BrokenSym)
 = -8811.596205

 E(High-Spin)-E(BrokenSym)= 0.0064 eV 51.818 cm**-1 (ANTIFERROMAGNETIC coupling) _____ | Spin-Hamiltonian Analysis based on H(HDvV)= -2J*SA*SB | _____ | J(1) = -2.07 cm**-1 (from -(E[HS]-E[BS])/Smax**2) | | J(2) = -1.73 cm**-1 (from -(E[HS]-E[BS])/(Smax*(Smax+1)) | | J(3) = -2.07 cm**-1 (from -(E[HS]-E[BS])/(<S**2>HS-<S**2>BS)) | _____ J(1): (a) A.P. Ginsberg J. Am. Chem. Soc. 102 (1980), 111 (b) L. Noodleman J. Chem. Phys. 74 (1981), 5737 (c) L. Noodleman E.R. Davidson Chem. Phys. 109 (1986), 131 J(2) (d) A. Bencini D. Gatteschi J. Am. Chem. Soc. 108 (1980), 5763 J(3) (e) K. Yamaguchi Y. Takahara T. Fueno in: V.H. Smith (Ed.) Applied Quantum Chemistry. Reidel, Dordrecht (1986), pp 155 (f) T.Soda et al. Chem. Phys. Lett., 319, (2000), 223 TIMINGS Total SCF time: 1 days 21 hours 11 min 40 sec Total time 162700.879 sec 42620.788 sec (26.2%) Sum of individual times

 Fock matrix formation

 0.000 sec (0.0%)

 Diagonalization

 0.000 sec (0.0%)

 Density matrix formation

 0.000 sec (0.0%)

 Population analysis

 42620.788 sec (26.2%)

 Initial mode

 0.000 sec (0.0%) Initial guess Initial guess Orbital Transformation Orbital Orthonormalization 0.000 sec (0.0%) 0.000 sec (0.0%) 0.000 sec (0.0%) DIIS solution Grid generation 0.000 sec (0.0%) _____ _____ FINAL SINGLE POINT ENERGY -8811.596205104523 _____ _____ ***** ORCA property calculations ****************************** _____ Active property flags

(+) Dipole Moment

_____ ORCA ELECTRIC PROPERTIES CALCULATION Dipole Moment Calculation ... on Quadrupole Moment Calculation ... off Polarizability Calculation ... off ... azidaMn2Zn2.gbw GBWName Electron density file ... azidaMn2Zn2.scfp The origin for moment calculation is the CENTER OF MASS = (9.719880, 16.449405 11.656425) DIPOLE MOMENT _____
 X
 Y
 Z

 Electronic contribution:
 0.00043
 0.00002
 -0.00015

 Nuclear contribution:
 -0.00022
 -0.00000
 -0.00021
 Total Dipole Moment : 0.00021 0.00002 -0.00036 Magnitude (a.u.) : 0.00042 Magnitude (Debye) : 0.00106 _____ Rotational spectrum _____ Rotational constants in cm-1: 0.001608 0.001321 0.001120 Rotational constants in MHz : 48.214959 39.609306 33.570329 Dipole components along the rotational axes: x,y,z [a.u.] : -0.000340 0.000020 -0.000238 x,y,z [Debye]: -0.000864 0.000052 -0.000606 Timings for individual modules:

 Sum of individual times
 ... 162784.947 sec (=2713.082 min)

 GTO integral calculation
 ... 20.290 sec (= 0.338 min) 0.0 %

 SCF iterations
 ... 162764.657 sec (=2712.744 min) 100.0 %

 ****ORCA TERMINATED NORMALLY****

 TOTAL RUN TIME: 1 days 21 hours 13 minutes 8 seconds 817 msec

20