An ultra-sensitive selective fluorescence sensor based on a 3D

zinc-tetracarboxylic framework for the detection and enrichment

of trace Cu²⁺ in aqueous media

Mei-Rong Han^{a†}, Wen-Xia Dong^{c†}, Si-Si Feng^{a,b*}, Li-Ping Lu^{a,b*}, Zhong-Ping Li^{c*} ^aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China.

^bKey Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China.

^cInstitute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China.

*Corresponding author. E-mail: <u>ssfeng@sxu.edu.cn</u> & luliping@sxu.edu.cn

Experimental Section

Material and measurement

All reagents and solvents were purchased from commercial sources and used without further purification. The IR spectra were recorded from KBr pellets in the range of 4000-400 cm⁻¹ on a Bruker TENSOR27 Spectrometer. Elemental analysis (EA) was carried out using a CHNO-Rapid instrument. Powder X-ray diffractions (PXRD) were recorded on a Rikagu Smartlab X-ray diffractometer with Cu–K α radiation ($\lambda = 1.5406$ Å) in the range of 5–50° in 2 θ at a rate of 5°/min. The thermogravimetric (TG) study was carried out on a Dupont thermal analyzer with a temperature range of 25-800 °C under N₂ flow with a heating rate of 10 °C min⁻¹. The luminescence spectra were recorded on a PTI Quanta Master-400 Spectrofluorometer with a xenon arc lamp as the light source. The pass width of 5 nm was used in the measurement of emission and 5 nm for excitation spectra, and all the measurements were performed under the same experimental conditions. UV-vis diffuse reflectance spectroscopy (DRS) was performed by using a TU-1950 UV-vis spectrophotometer, during which BaSO₄ was adopted as the internal reflectivity standard. The UV-visible spectra were recorded with a JASCO V-570 spectrophotometer. Luminescence lifetime measurements were carried out on an Edinburgh Instruments Fluorescence Lifetime spectrometer 980 (FLS 980), and the quantum yields were measured on a Hamamatsu Absolute PL Quantum Yield spectrometer C9920-02G. The accurate elemental ratio of Zn/Cu was determined using an Agilent inductively coupled plasma atomic emission spectrometer 730 (ICP-OES 730). The X-ray photoelectron spectroscopy (XPS) data were obtained from electronic spectrometer (Shimadzu Japan).

X-ray crystal structure determination

Single-crystal X-ray diffraction data for 1 were collected on the Beijing Synchrotron Radiation Facility (BSRF) beamline 1W2B, which was equipped with a MAR CCD-165 detector ($\lambda = 0.7200$

Å) with the storage ring working at 2.5 GeV at 100(2) K. Data were collected using the MARCCD equipment and processed using the HKL2000 program^[38]. The structure was solved *via* direction methods employed in the *SHELXS-2014* program and refined by full-matrix least squares methods against F^2 with *SHELXL-2014*^[39]. After all non-H atoms were refined anisotropically, hydrogen atoms attached to C atoms were placed geometrically and refined using a riding model approximation, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. Hydrogen atoms in hydroxyl and water molecules were located from difference Fourier maps and refined using their global U_{iso} value with O–H = 0.82 Å. The residual density map showed an over-assignment at the Zn2 site, so it was checked by experiments. Firstly, there was no copper source in the synthesis of complex 1; Secondly, ICP and XPS results of the complex showed that there was no copper in it. Therefore, radiation damage in the synchrotron beam is the likely cause, especially since it occurs at the Zn2 ion located on a centre of symmetry, which has two water molecules bound to it and is therefore more susceptible to radiation damage. Crystallographic data in CIF format are deposited with the Cambridge Crystallographic Data Center as CCDC 2031935 for 1. Crystal data and structure refinement details were summarized in Table 1.

Fig. S1 FT-IR spectra of MOF 1 and H₄bptc ligand.

Fig. S2 The PXRD patterns of MOF 1 (simulated, fresh and recovered) at room temperature.

Fig. S3 TG traces of MOF 1 ranging from room temperature to 800 °C.

Fig. S4 The PXRD patterns of MOF 1 after being immersed in aqueous solutions at pH = 1, 3, 5, 7, 9, 11, 13 (24 h).

Fig. S5 Emission spectra of MOF **1** (a) in aqueous solution for 7 days; (b) in a series of aqueous solutions with pH values ranging from 2.0 to 12.0 for 24 hours.

Fig. S6 Luminescence intensities of 1 in the presence of different anions with the concentration of $80 \ \mu M.$

Table S1. Comparison of Various MOFs Sensors for the Detection of Cu²⁺.

Sensor	Linear	Туре	K	LOD	Media	Refs
	range(µM)	(M ⁻¹)	(M ⁻¹)	(nM)		
UiO-66(OH)2@PCN-224	0–10	off	4.03×10 ⁵	0.068	CH ₃ OH:	S 1
					H_2O	
					(v:v=	
			-		1:1)	
BPEI-CQDs/ZIF-8	0.002 - 1	off	3.688×10 ⁵	0.08	pH=8	S2
			7		PBS	
MOF-525	0.01–0.25	off	2.56×10 ⁷	0.22	pH=7.4	S3
	0.01.0.5	00	1 00 106	•	HEPES	
$S_1O_2(a)ZIF-8$	0.01–0.5	off	1.83×10°	3.8	HEPES	S4
[Zn ₃ (µ ₃ -Hbptc) ₂ (µ ₂ -4,4'-	0-0.7	off	1.641×10 ⁵	32.4	pH=7.4	This
bpy) ₂ (H ₂ O) ₄] _n ·2nH ₂ O					HEPES	Work
PCN-222-Pd(II)	0.05–2	on	_	50	H_2O	S5
MOF-525	$3.4 \times 10^{6} - 4 \times 10^{7}$	off	4.5×10 ⁵	67	H ₂ O	S6
[Ca(H ₂ tcbpe-F)(H ₂ O) ₂]	0.5–4	off	4.39×10^5	130	H_2O	S 7
Eu ³⁺ @Bio-MOF-1	0–250	ratio	6.167×10 ⁵	Cu^{2+}/S^{2-}	H ₂ O	S 8
		metri		140/		
		c		1.3×10^{3}		
$[Tb_2(DCSAL)_3(H_2O)_{11}]$	3–50	off	4.8×10^{4}	170	acetonitr	S9
3DCSAL·4H ₂ O					ile	
Tb ³⁺ @UiO-66-(COOH) ₂	0–200	off	4.12×10 ⁴	230	H ₂ O	S10
UiO-66-NH-BT	0-80	off	1.1×10^{5}	$Cu^{2+}/Cr_2O_7^{-}/$	H_2O	S11
				CrO_4^{2-}		

				266/1.3×10 ³ /		
[Eu2(MTBC)(OH)2(DM	0–	off	2.2514×10	411 Cu ²⁺ /UO ₂ ²⁺	DMF:	S12
$F)_3(H_2O)_4] \cdot 2DMF \cdot 7H_2O$	7.87×10^{3}		3	270.7/	H_2O	
				1.1451×10^{3}	(v:v=	
(I n-CPN)AMP-Th	1 5-24	off	2.4×10^4	300	1:1) nH=7.4	S13
	1.5 21	011	2.1 10	500	HEPES	515
[Cd(H ₂ ttac)bpp] _n	_	off	_	630	DMF	S14
$\{[Zn_2Na(L)(HL)_2(H_2O)_2]$	0.5–	off	7.75×10^{4}	650	H_2O	S15
$[OAc] \cdot 2H_2O\}_n$	1.2×10^{3}					
Eu ³⁺ @MOF-253	0–100	off	1.0975×10 4	660	H ₂ O	S16
[Ca(H ₂ tcbpe)(H ₂ O) ₂]	2.5–25	off	1.56×10 ⁵	790	$\mathrm{H}_{2}\mathrm{O}$	S7
ZnMGO	1–70	off	3.07×10^{4}	1×10 ³	H_2O	S17
[Tb ₃ (L) ₂ (HCOO)(H ₂ O) ₅]	$1 - 10^4$	off	2.0218×10	1×10 ³	pH=7	S18
\cdot DMF \cdot 4H ₂ O	0 104	off	5.2×10^4	$C u^{2+}/E a^{3+}$	HEPES EtOH	\$10
$\{[Eu_2K_2(ucppa)_2(H_2O)_6]\}$	0–10	011	5.2 × 10	Cu / re^{-1}	EIOH	519
	0 1 0 103	C C	5 (106	1×10°/5×10°	ШО	GQQ
$\{[Cd(\mu_3-HL)_2(H_2O)]^{-2.3}$ $H_2O\}_n$	0–1.8×10 ³	off	5.6×10°	1.07×10 ³	H ₂ O	S20
MIL-101-NH ₂	$10 - 10^4$	off	1.555×10^{4}	Cu ²⁺ /Fe ³⁺ /	pH=5	S21
				Pb ²⁺	H ₂ O	
				$1.6 \times 10^{3}/1.8 \times 10^{3}/$		
				5.2×10^3		
$[Ce(1,5-NDS)_{1.5}(H_2O)_5]_n$	5-100	off	7.668×10 ³	3×10 ³	H ₂ O	S22
Cd(INA)(pytpy)(OH)·2H	0–12	off	1.3 × 10 ⁵	3.98×10 ³	H ₂ O	S23
Tb(BTC)(H ₂ O) ₁ $5 \cdot (DMF)$	$10 - 10^3$	off	1.192×10 ³	7.87×10^{3}	H2O	S24
@silk fiber					2	
Eu(FBPT)(H ₂ O)(DMF)	_	off	_	1×10^{4}	DMF	S25
[H ₂ N(CH ₃) ₂][Eu ₃ (L ₁) ₂ (H	_	off	2.35×10 ³	1×10^{4}	DMF	S26
$COO)_2(DMF)_2(H_2O)]$			± 40			
[Eu(pdc) _{1.5} (DMF)]·(DM	10 ³ -6×10 ³	off	2.146×10 ³	1×10^{4}	DMF	S27
F)·0.5(H ₂ O) _{0.5}			±65			
$\{[Mg_3(ndc)_{2.5}(HCO_2)_2(HO_2)(HO_2)_2(HO_2)_2(HO_2)_2(HO_2)_2(HO_2)_2(HO_2)_2(HO_$	$0-10^{4}$	off	1.986×10^{3}	1×10^{4}	EtOH	S28
$\frac{20}{100} \frac{100}{100} 100$						
InPCF-1	100–	off	$1.84 \times 10^{3} \pm$	1×10^{4}	DMF	S29
	2.8×10 ³		45.9			

[Eu(HL)(L)(H ₂ O) ₂]·2H ₂ O	10 ³ -5×10 ³	off	1.163×10 ³ ±52	1×10 ⁴	EtOH	S30
MIL-53-L	0–500	off	6.15×10 ³	1×10^{4}	H_2O	S31
H ₂ [Dy ₂ (PABA) ₄ (bpy) ₂ (N O ₃) ₂](bpy) ₂ (EtOH) ₂ (NO ₃	_	off	_	1×10 ⁴	H ₂ O	S32
$[Cd_2(L)(OH)(H_2O)_2]$	0–50	off	3.09×10 ⁴	$\begin{array}{c} Cu^{2+}/Cr_{2}O_{7}^{2-} \\ 1.048{\times}10^{4}/ \\ 3.917{\times}10^{3} \end{array}$	H ₂ O	S33
{[Nd ₂ (NH ₂ -BDC) ₃ (DMF) ₄]} _n	0–10 ³	off	359.855	2.495×10 ⁴	DMF	S34
[Cd ₃ (Htcps) ₂ (btap)(H ₂ O) 6]	0-8×10 ⁴	off	1.03×10 ⁴	Cu^{2+}/Fe^{3+} 3.25×10 ⁴ /8.7 ×10 ³	H ₂ O	S35
[Zn(btca)(py) ₂]	0-550	off	2.92×10 ⁴	Cu ²⁺ /PO ₄ ³⁻ 4.7210×10 ⁴ / 4.738×10 ⁵	H ₂ O	S36
[Cd (Ligand)]·2DMF	0–9441.98	off	4.1×10^{3}	4.7210×10 ⁴	DMF	S37
$[Cd(L)_2] \cdot (DMF)_{0.92}$	0-500	off	4.4×10^{3}	6.1373×10 ⁴	DMF	S38
Eu2(TBrTA)3(H2O)8·2H2 O	-	off	4.612×10 ³	Cu ²⁺ /Fe ³⁺ 7.52×10 ⁴ / 6.79×10 ⁴	EtOH	S39
Cd-MOF-74	78.68– 1.2589×10 4	off	1.806×10 ³	7.87×10 ⁴	pH=6.7 HEPES	S40
${NH_2(CH_3)_2 \cdot Cd_{2.5}(L)_2(H_2O) \cdot (H_2O)}_n$	_	off	_	1×10 ⁵	DMSO	S41
FITC Eu Fe ₃ O ₄ @ZIF-8	10 ² -10 ³	ratio metri c		1×10 ⁵	H ₂ O	S42
C ₃ N ₄ @ZIF-8	78.68– 173.1	off	_	Cu ²⁺ /Ag ⁺ / Fe ²⁺ 1.7625×10 ⁵ /1. 2237×10 ⁵ / 1.1711×10 ⁶	DMF	S43
[Zn ₂₁ (BTC) ₁₁ (µ ₃ -OH) ₃ (µ ₄ -O) ₃ (H ₂ O) ₁₈]·21EtOH	10 ³ -10 ⁵	off	286.1	Cu^{2+}/Al^{3+} 1.34×10 ⁶	CH₃OH	S44
[Cd(2-aip)(bpy)]·2DMF	_	off	_	1×10^{7}	DMF	S45
Eu2(FMA) (OX)(H2O)4·4H2O	_	off	528.7	_	H ₂ O	S46
${[Tb_4(\mu_3-OH)_4(BPDC)_3($	_	off	344.9±10.	Cu^{2+}/CrO_4^{2-}	pH=7	S47

BPDCA) _{0.5} (H ₂ O) ₆]ClO ₄ ·			2	_	HEPES	
$5H_2O_n$						
$[Cd_{3}(L)_{2}(H_{2}O)_{5}] \cdot (H_{2}O)_{4}$	0–100	off	3.65×10^{4}	_	H_2O	S48
CPP-16	-	off	7.8467×10 3	_	MeCN	S49
${[Eu_2(L_2)_2] \cdot (H_2O)_3 \cdot (Me_2 NH_2)_2}_n$	_	off	_	Cu^{2+}/Fe^{2+}	H ₂ O	S50
$\label{eq:main_state} \begin{split} &\{[Eu_2(abtc)_{1.5}(H_2O)_{3-}(D\\ MA)]\cdot H_2O\cdot DMA\}_n \end{split}$	5×10 ² - 5×10 ⁴	off	529	_	H ₂ O	S51

Table S2 . Determination of Cu^{24}	⁺ in Real Samples.
--	-------------------------------

Sample	initial Cu ²⁺	Spiked Cu ²⁺	proposed method	recovery
	(nM)	(n M)	Cu ²⁺ (nM)	(%)
Tap water 1	66.08	0	65.85	99.65
Tap water 2	66.08	24.94	93.17	102.36
Tap water 3	66.08	49.75	115.39	99.62
River 1	83.89	0	82.02	97.77
River 2	83.89	24.94	106.33	97.70
River 3	83.89	49.75	134.13	100.37

Fig. S7 PXRD patterns of complex 1 before and after soaking in Cu^{2+} solution.

Fig. S8 Liquid UV-vis spectra of Cu^{2+} and emission spectrum of 1 in the aqueous solution.

Fig. S9 Graphical representation of the powder 1 adsorption and desorption of the Cu²⁺.

Fig. S10 UV-Vis DRS of the powder 1 before and after the adsorption of the Cu^{2+} .

Fig. S11 (a) XPS patterns of the powder 1 before and after the adsorption of the Cu²⁺. (b) An enlarged image of XPS spectra of Cu 2p. (c) The binding energy of O 1s in 1 before and after the adsorption of the Cu²⁺.

REFERENCES

- S1. J. Chen, H. Chen, T. Wang, J. Li, J. Wang and X. Lu, Anal. chem., 2019, **91**, 4331-4336.
- S2. X. Lin, G. Gao, L. Zheng, Y. Chi and G. Chen, Anal. chem., 2014, 86, 1223-1228.
- S3. C. Cheng, R. Zhang, J. Wang, Y. Zhang, C. Wen, Y. Tan and M. Yang, *Analyst*, 2020, 145, 797-804.
- S4. Y. Song, D. Hu, F. Liu, S. Chen and L. Wang, Analyst, 2015, 140, 623-629.
- S5. Y.Z. Chen and H.L. Jiang, Chem. Mater., 2016, 28, 6698-6704.
- S6. L. Li, S. Shen, R. Lin, Y. Bai and H. Liu, Chem. Commun., 2017, 53, 9986-9989.
- S7. Z.F. Wu, E. Velasco, C. Shan, K. Tan, Z.Z. Zhang, Q.Q. Hu, K. Xing, X.Y. Huang and J. Li, J. Mater.

Chem. C., 2020, 8, 6820-6825.

S8. H. Weng and B. Yan, Anal. Chim. Acta., 2017, 988, 89-95.

S9. T. Chu, Y. Hu, J. Wu, C. Zeng, Y. Yang and S. W. Ng, Photochem. Photobiol. Sci., 2016, 15, 744-751.

S10. X.X. Peng, G.M. Bao, Y.F. Zhong, J.X. He, L. Zeng and H.Q. Yuan, *Spectrochim. Acta, Part A.*, 2020, **240**, 118621.

S11. A. Helal, M. Nasiruzzaman Shaikh and M. Abdul Aziz, *J. Photochem. Photobiol. A.*, 2020, **389**, 112238.

S12. W. Liu, Y. Wang, L. Song, M.A. Silver, J. Xie, L. Zhang, L. Chen, J. Diwu, Z. Chai and S. Wang, *Talanta*, 2019, **196**, 515-522.

S13. P. Huang, F. Wu and L. Mao, Anal. chem., 2015, 87, 6834-6841.

S14. L.Y. Pang, G.P. Yang, J.C. Jin, M. Kang, A.Y. Fu, Y.Y. Wang and Q.Z. Shi, *Cryst. Growth Des.*, 2014, **14**, 2954-2961.

S15. L.L. Liu, Y.Z. Yu, X.J. Zhao, Y.R. Wang, F.Y. Cheng, M.K. Zhang, J.J. Shu and L. Liu, *Dalton Trans.*, 2018, **47**, 7787-7794.

S16. J. Luo, B.S. Liu, X.R. Zhang and R.T. Liu, J. Mol. Struct., 2019, 1177, 444-448.

S17. L. Hao, H. Song, Y. Su and Y. Lv, Analyst, 2014, 139, 764-770.

S18. J. Zhao, Y.N. Wang, W.W. Dong, Y.P. Wu, D.S. Li and Q.C. Zhang, J. Mol. Struct., 2016, 55, 3265-3271.

S19. H. Zhang, R. Fan, W. Chen, J. Fan, Y. Dong, Y. Song, X. Du, P. Wang and Y. Yang, *Cryst. Growth Des.*, 2016, 16, 5429-5440.

S20. J.D. An, T.T. Wang, Y.F. Shi, X.X. Wu, Y.Y. Liu, J.Z. Huo and B. Ding, *J. Mol. Struct.*, 2020, **1216**, 128328.

S21. S.W. Lv, J.M. Liu, C.Y. Li, N. Zhao, Z.H. Wang and S. Wang, Chem. Eng. J., 2019, 375, 122111.

S22. S. Geranmayeh, M. Mohammadnejad and S. Mohammadi, *Ultrason. Sonochem.*, 2018, **40**, 453-459.

S23. J. Zhang, J. Wu, G. Tang, J. Feng, F. Luo, B. Xu and C. Zhang, *Sens. Actuators, B.*, 2018, **272**, 166-174.

S24. J. Li, X. Yuan, Y.N. Wu, X. Ma, F. Li, B. Zhang, Y. Wang, Z. Lei and Z. Zhang, *Chem. Eng. J.*, 2018, **350**, 637-644.

S25. Z. Hao, X. Song, M. Zhu, X. Meng, S. Zhao, S. Su, W. Yang, S. Song and H. Zhang, *J. Mater. Chem. A.*, 2013, **1**, 11043.

S26. B. Liu, W. P. Wu, L. Hou and Y. Y. Wang, Chem. Commun., 2014, 50, 8731-8734.

S27. B. Liu, L. Hou, W. P. Wu, A. N. Dou and Y. Y. Wang, Dalton Trans., 2015, 44, 4423-4427.

S28. S. Bhattacharyya, A. Chakraborty, K. Jayaramulu, A. Hazra and T. K. Maji, *Chem. Commun.*, 2014, **50**, 13567-13570.

S29. W. Dan, X. Liu, M. Deng, Y. Ling, Z. Chen and Y. Zhou, Dalton Trans., 2015, 44, 3794-3800.

S30. L.N. Zhang, A.L. Liu, Y.X. Liu, J.X. Shen, C.X. Du and H. W. Hou, Inorg. *Chem. Commun.*, 2015, **56**, 137-140.

S31. C. Liu and B. Yan, Sens. Actuators, B., 2016, 235, 541-546.

S32. S. Roy, O. B. Chanu, S. Sarkar and S. C. Peter, J. Mater. Chem. C., 2016, 4, 6256-6269.

S33. C.J. Hu, L. Yu, W.W. Dong, Y.P. Wu, D.S. Li and J. Zhao, Z. Anorg. Allg. Chem., 2019, 645, 484-489.

S34. J. Luo, B. S. Liu, C. Cao and F. Wei, Inorg. Chem. Commun., 2017, 76, 18-21.

S35. J. Sun, T. Zhou, D. Pan, X. Zhang, Y. Wang, Y.C. Shi and H. Yu, CrystEngComm., 2020, 22, 534-545.

S36. Y. Xie, S. Ning, Y. Zhang, Z. Tang, S. Zhang and R. Tang, Dyes Pigm., 2018, 150, 36-43.

S37. A. Yousaf, N. Xu, A.M. Arif, J. Zhou, C.Y. Sun, X.L. Wang and Z.M. Su, *Dyes Pigm.*, 2019, **163**, 159-167.

S38. S. Senthilkumar, R. Goswami, V.J. Smith, H.C. Bajaj and S. Neogi, *ACS Sustainable Chem. Eng.*, 2018, **6**, 10295-10306.

S39. J.A. Smith, M.A. Singh-Wilmot, K.P. Carter, C.L. Cahill and J.A. Ridenour, *Cryst. Growth Des.*, 2019, **19**, 305-319.

S40. T. T. Zheng, J. Zhao, Z. W. Fang, M. T. Li, C. Y. Sun, X. Li, X. L. Wang and Z. M. Su, *Dalton Trans.*, 2017, **46**, 2456-2461.

S41. C. Qiao, X. Qu, Q. Yang, Q. Wei, G. Xie, S. Chen and D. Yang, *Green Chem.*, 2016, 18, 951-956.

S42. J. Wang, H. Chen, F. Ru, Z. Zhang, X. Mao, D. Shan, J. Chen and X. Lu, *Chem. Eng. J.*, 2018, **24**, 3499-3505.

S43. W. Chen, S. Kong, J. Wang, L. Du, W. Cai and C. Wu, RSC Adv., 2019, 9, 3734-3739.

S44. Z. Zhou, X. Xing, C. Tian, W. Wei, D. Li, F. Hu and S. Du, Sci Rep., 2018, 8, 3117.

S45. H.N. Wang, P.X. Liu, H. Chen, N. Xu, Z.Y. Zhou and S.P. Zhuo, RSC Adv., 2015, 5, 65110-65113.

S46. Y. Xiao, Y. Cui, Q. Zheng, S. Xiang, G. Qian and B. Chen, Chem. Commun., 2010, 46, 5503-5505.

S47. J.M. Zhou, W. Shi, H.M. Li, H. Li and P. Cheng, J. Phys. Chem. C., 2013, 118, 416-426.

S48. J.L. Du, J.P. Gao, C.P. Li, X.Y. Zhang, J.X. Hou, X. Jing, Y.J. Mu and L.J. Li, *RSC Adv.*, 2017, **7**, 49618-49625.

S49. W. Cho, H. J. Lee, G. Choi, S. Choi and M. Oh, J. Am. Chem. Soc., 2014, 136, 12201-12204.

S50. R. Wang, X. Y. Dong, H. Xu, R. B. Pei, M. L. Ma, S. Q. Zang, H. W. Hou and T. C. Mak, *Chem. Commun.*, 2014, **50**, 9153-9156.

S51. P. Y. Du, W. Gu and X. Liu, Inorg. chem., 2016, 55, 7826-7828.