Electronic Supplementary Information

for the manuscript entitled

Ruthenium complexes of phosphine-amide based ligands as efficient catalysts for transfer hydrogenation reactions

Samanta Yadav, Paranthaman Vijayan, Sunil Yadav and Rajeev Gupta*

Department of Chemistry, University of Delhi, Delhi 110007, India

E-mail: rgupta@chemistry.du.ac.in

Figure S1. FTIR spectrum of ligand HL¹.

Figure S2. FTIR spectrum of ligand HL².

Figure S3. FTIR spectrum of ligand HL³.

Figure S4. Selected part of ¹H NMR spectrum of ligand HL¹ in CDCl₃.

Figure S5. Selected part of ¹H NMR spectrum of ligand HL² in CDCl₃.

Figure S6. Selected part of ¹H NMR spectrum of ligand HL³ in CDCl₃.

Figure S7. Selected part of ¹³C NMR spectrum of ligand HL¹ in CDCl₃.

Figure S8. Selected part of ¹³C NMR spectrum of ligand HL² in CDCl₃.

Figure S9. Selected part of ¹³C NMR spectrum of ligand HL³ in CDCl₃.

Figure S10. Selected part of ³¹P NMR spectrum of ligand HL¹ in CDCl₃.

Figure S11. Selected part of ³¹P NMR spectrum of ligand HL² in CDCl₃.

Figure S12. Selected part of ³¹P NMR spectrum of ligand HL³ in CDCl₃.

Figure 13. ESI⁺-MS spectrum of ligand HL¹ in MeOH.

Figure 14. ESI⁺-MS spectrum of ligand HL² in MeOH.

Figure 15. ESI⁺-MS spectrum of ligand HL³ in MeOH.

Figure S16. FTIR spectrum of complex 1.

Figure S17. FTIR spectrum of complex 2.

Figure S18. FTIR spectrum of complex 3.

Figure S19. UV-Vis spectra of complexes 1-3 recorded in DMF.

Figure S20. ¹H NMR spectrum of complex 1 in CDCl₃.* Represents residual solvent peak.

Figure S21. ¹H NMR spectrum of complex **2** in CDCl₃.* Represents residual solvent peak.

Figure S22. ¹H NMR spectrum of complex **3** in CDCl₃.* Represents residual solvent peak.

Figure S23. Selected part of ¹³C NMR spectrum of complex **1** in CDCl₃.* Represents residual solvent peak.

Figure S24. (a) Selected part of ¹³C NMR spectrum of complex **2** in CDCl₃. (b) ¹³C NMR spectrum of complex **2** in DMSO-d₆. (c) HSQC spectrum of complex **2** in DMSO-d₆. (d) Expansion of HSQC signals in the range of 6.6 to 10.0 ppm for ¹H NMR spectrum and 120-155 ppm for ¹³C NMR spectrum. Black, red and green asterisks represent the NMR solvent and residual solvents methanol and adventitious H₂O, respectively.

Figure S25. Selected part of ¹³C NMR spectrum of complex **3** in CDCl₃.* Represents residual solvent peak.

Figure S26. Selected part of ³¹P NMR spectrum of complex 1 in CDCl₃.

Figure S27. Selected part of ³¹P NMR spectrum of complex 2 in CDCl₃.

Figure S28. Selected part of ³¹P NMR spectrum of complex 3 in CDCl₃.

Figure S29. ESI⁺-MS spectrum of complex 1 in MeOH.

Figure S30. Experimental (green) and simulated (red) pattern for molecular ion peak at $m/z = 547.0647 [M-CH_3OH]+H]^+$ for complex **1**.

Figure S31. ESI⁺-MS spectrum of complex 2 in MeOH.

Figure S32. Experimental (green) and simulated (red) pattern for molecular ion peak at $m/z = 625.002 \text{ [M+H]}^+\text{for complex } 2$.

Figure S33. ESI⁺-MS spectrum of complex 3.

Figure S34. Experimental (green) and simulated (red) pattern for molecular ion peak at $m/z = 625.0021 \text{ [M+H]}^+$ for complex **3**.

Figure S35. Cyclic voltammograms of complexes 1-3. Conditions: Solvent, CH₃OH; complex, ca. 1 mM; supporting electrolyte, TBAP, ca. 100 mM; working electrode, glassy carbon; reference electrode, Ag/Ag⁺; auxiliary electrode, Pt wire; scan rate, 100 mV/s.

Gas chromatograms for various organic products with the method used:

Method A: Column information: Elite-5, L=30 m, ID: 0.25 mm; injector temperature: 50°C; column flow rate: 1.13 mL/min; column temperature: 50-180 °C; temperature program: 10 °C/min; detector temperature: 250 °C

Method B: Column information: Elite-5, L=30 m, ID: 0.25 mm; injector temperature: 100°C; column flow rate: 1.13 mL/min; column temperature: 80-180 °C; temperature program: 8 °C/min; detector temperature: 270 °C

Method C: Column information: Rtx-5, L = 30 m, ID: 0.25 mm; injector temperature: 220 °C; column flow rate: 1.13 mL/min; column temperature: 100 - 180 °C; temperature program: 6 °C/min; detector temperature: 250 °C.

Figure S36. Gas chromatogram for the transfer hydrogenation of acetophenone (Table 2, Entry 1) using method A. * Represents ethyl acetate and * represents isopropanol.

Figure S37. Gas chromatogram for the transfer hydrogenation of benzophenone, Table 2, Entry 2 using method A. * Represents ethyl acetate and * represents isopropanol.

Figure S38. Gas chromatogram for the transfer hydrogenation of 4-methylacetophenone, Table 2, Entry 3 using method A. * Represents ethyl acetate and * represents isopropanol.

Figure S39. Gas chromatogram for the transfer hydrogenation of 4-chloroacetophenone, Table 2, Entry 4 using method A. * Represents ethyl acetate and * represents isopropanol.

Figure S40. Gas chromatogram for the transfer hydrogenation of 4-bromoacetophenone, Table 2, Entry 5 using method A. * Represents ethyl acetate and * represents isopropanol.

Figure S41. Gas chromatogram for the transfer hydrogenation of 3-bromoacetophenone, Table 2, Entry 6 using method B. * Represents ethyl acetate and * represents isopropanol.

Figure S42. Gas chromatogram for the transfer hydrogenation of 4-nitroacetophenone, Table 2, Entry 7 using method A. * Represents ethyl acetate.

Figure S43. Gas chromatogram for the transfer hydrogenation of 2-aminoacetophenone, Table 2, Entry 8 using method A. * Represents ethyl acetate and * represents isopropanol.

Figure S44. Gas chromatogram for the transfer hydrogenation of 2,4-dichloroacetophenone, Table 2, Entry 9 using method B. * Represents ethyl acetate and * represents isopropanol.

Figure S45. Gas chromatogram for the transfer hydrogenation of 4-chlorobenzophenone, Table 2, Entry 10 using method A. * Represents ethyl acetate.

Figure S46. Gas chromatogram for the transfer hydrogenation of 2-amino-4-chlorobenzophenone, Table 2, Entry 11 using method A. * Represents ethyl acetate and * represents isopropanol.

Figure S47. Gas chromatogram for the transfer hydrogenation of 2-aminobenzophenone, Table 2, Entry 12 using method A. * Represents ethyl acetate and * represents isopropanol.

Figure S48. Gas chromatogram for the transfer hydrogenation of 4,4'-dimethoxybenzophenone, Table 2, Entry 13 using method B. * Represents ethyl acetate.

Figure S49. Gas chromatogram for the transfer hydrogenation of cyclohexanone, Table 2, Entry 14 using method B. * Represents ethyl acetate and * represents isopropanol.

Figure S50. Gas chromatogram for the transfer hydrogenation of cycloheptanone, Table 2, Entry 15 using method A. * Represents ethyl acetate.

Figure S51.¹H NMR spectrum of product **1** in CDCl₃. * Represents the residual solvent peak and/or water.

Figure S52. ¹H NMR spectrum of product **2** in CDCl₃. * Represents the residual solvent peak and/or water.

Figure S53. ¹H NMR spectrum of product **3** in CDCl₃. * Represents the residual solvent peak and/or water.

Figure S54. ¹H NMR spectrum of product 4 in CDCl₃. * Represents the residual solvent peak.

Figure S55. ¹H NMR spectrum of product **5** in CDCl₃.* Represents the residual solvent peak and/or water.

Figure S56. ¹H NMR spectrum of product 6 in $CDCl_3$. * Represents the residual solvent peak and/or water.

Figure S57. ¹H NMR spectrum of product 7 in CDCl₃. * Represents the residual solvent peak and/or water.

Figure S58. ¹H NMR spectrum of product **8** in CDCl₃. * Represents the residual solvent peak and/or water.

Figure S59. ¹H NMR spectrum of compound **9** in CDCl₃. * Represents the residual solvent peak and/or water.

Figure S60. ¹H NMR spectrum of compound 10 in CDCl₃. * Represents the residual solvent peak and/or water.

Figure S61. ¹H NMR spectrum of compound 11 in CDCl₃. * Represents the residual solvent peak and/or water.

Figure S62. ¹H NMR spectrum of compound 12 in CDCl₃. * Represents the residual solvent peak and/or water.

Figure S63. ¹H NMR spectrum of compound **13** in CDCl₃. * Represents the residual solvent peak and/or water.

Figure S64. ¹H NMR spectrum of product **14** in CDCl₃. * Represents the residual solvent peak and/or water.

Figure S65. ¹H NMR spectrum of product **15** in CDCl₃. * Represents the residual solvent peak and/or water.

Figure S66. Gas chromatogram for the transfer hydrogenation of coumarin, Scheme 2, Entry 1 using method C. * Represents ethyl acetate.

Figure S67. Gas chromatogram for the transfer hydrogenation of menthone, Scheme 2, Entry 2 using method B. * Represents ethyl acetate and * represents isopropanol.

Figure S68. Gas chromatogram for the transfer hydrogenation of camphor, Scheme 2, Entry 3 using method B. * Represents ethyl acetate and * represents isopropanol.

Figure S69. Gas chromatogram for the transfer hydrogenation of 10-camphorsulphonic acid, Scheme 2, Entry 4 using method C. * Represents ethyl acetate.

Figure S70. ¹H NMR spectrum of TH products of coumarin in CDCl₃. * Represents the residual solvent peak and/or water.

Figure S71. ¹H NMR spectrum of diastereomers of menthone in CDCl₃. * Represents the residual solvent peak.

Figure S72. ¹H NMR spectrum of diastereomers of camphor in CDCl₃. * Represents the residual solvent peak.

Figure S73. ¹H NMR spectrum of diastereomers of 10-camphorsulphonic acid in CDCl₃. * Represents the residual solvent peak.

Figure S74. UV-Vis spectral titration of complex 3 (40 μ M) with potassium isopropoxide in DMF. Inset **a**: Job's plot showing a 1:1 binding stoichiometry between complex 3 and isopropoxide ion. Inset **b**: Linear regression fitting curve for a 1:1 binding between complex 3 and isopropoxide ion.

Figure S75. ¹H NMR spectrum of complex 4 in DMSO-d₆. * Represent residual solvent peaks.

Figure S76. ¹H NMR spectrum of complex 5 in DMSO-d₆. * Represent residual solvent peaks.

Figure S77. Selected part of ¹³C NMR spectrum of complex **4** in DMSO-d₆. * Represents residual solvent peak.

Figure S78. Selected part of ¹³C NMR spectrum of complex **5** in DMSO-d₆. * Represents residual solvent peak.

Figure S79. FTIR spectrum of complex 4.

Figure S80. FTIR spectrum of complex 5.

Figure S81. UV-Vis spectra of complexes 4 (black trace) and 5 (red trace) recorded in DMF.

¹H NMR spectra used for the calculation of yields for the Hammett plot:

Figure S82. ¹H NMR spectrum of a reaction mixture for the TH of acetophenone in CDCl₃.

Figure S83. ¹H NMR spectrum of a reaction mixture for the TH of 4-methylacetophenone in CDCl₃.

Figure S84. ¹H NMR spectrum of a reaction mixture for the TH of 4-chloroacetophenone in CDCl₃.

Figure S85. ¹H NMR spectrum of a reaction mixture for the TH of 4-nitroacetophenone in CDCl₃.

Figure S86. GC calibration plot for a mixture of 4-nitroacetophenone and 1-(4-nitrophenyl)ethan-1-ol).

	1	2	3
CCDC No.	1993893	1993892	1993891
Empirical formula	C ₂₆ H ₂₂ ClN ₂ O ₃ PRu	C ₃₀ H ₂₀ ClN ₂ O ₃ PRu	C ₃₀ H ₂₀ ClN ₂ O ₃ PRu
Formula weight	577.94	623.97	623.97
Temperature (K)	298(2)	298(2)	298(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	<i>I</i> 2/a	$P2_{1}/n$	Рт
Unit cell dimensions			
a(Å)	18.3088(8)	8.6093(12)	9.9715(4)
b(Å)	8.4872(4)	19.520(2)	11.0618(4)
c(Å)	32.8245(16)	16.0093(18)	12.8149(4)
a°	90	90	92.082(3)
β°	101.520(4)	101.983(12)	98.606(3)
γ°	90	90	108.609(3)
Volume (Å ³)	4997.9(4)	2631.8(6)	1319.19(9)
Ζ	8	4	2
Density Mg/m3 (calculated)	1.536	1.575	1.571
Absorption coefficient mm ⁻¹	0.829	0.794	0.792
F(000)	2336	1256	628
Crystal size (mm ³)	0.25 x 0.20 x 0.16	0.19 x 0.15 x 0.09	0.22 x 0.17 x 0.11
Theta range for data collection	3.278 to 29.612°	3.255 to 30.884°	3.498 to 24.999°
Index ranges	-25<=h<=25, -11<=k<=11, - 45<=l<=45	-12<=h<=12, -28<=k<=28, 23<=l<=23	-11<=h<=11, -13<=k<=13, - 15<=l<=15

Table S1. X-ray data collection and structure refinement parameters for complexes 1-3.

Reflections collected	31483	38198	15256
Independent reflections	4384 [<i>R</i> (int) = 0.0556]	6858 [<i>R</i> (int) = 0.1200]	4637 [R(int) = 0.0259]
Completeness to theta = 25°	99.7 %	99.8 %	99.7 %
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	4384 / 0 / 311	6858 / 0 / 343	4637 / 0 / 343
Goodness of-fit on F^2	1.023	0.975	1.074
Final R indices	R1 = 0.0364, wR2 = 0.0813	R1 = 0.1008, w $R2 = 0.2211$	R1 = 0.0237, w $R2 = 0.0539$
[<i>I</i> >2sigma(<i>I</i>)]			
<i>R</i> indices (all data)	R1 = 0.0466, w $R2 = 0.0859$	R1 = 0.1840, w $R2 = 0.3019$	R1 = 0.0265, wR2 = 0.0553
Largest diff. peak and	0.641 and -0.376	1.727 and -1.552	0.281 and -0.291
hole (e.Å ⁻³)			

 $\overline{R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|; wR} = \{\Sigma [w(Fo^2 - Fc^2)_2] / \Sigma [wFo_4]\}^{1/2}$

Bond Length (Å)	1	2	3
Ru(1)-C(1)	1.811(4)	1.890(10)	1.877(3)
Ru(1)-N(2)	2.068(3)	2.073(5)	2.088(16)
Ru(1)-N(1)	2.141(3)	2.112(6)	2.174(16)
Ru(1)-O(3)	2.183(2)		
Ru(1)-P(1)	2.275(9)	2.292(2)	2.308(5)
Ru(1)-Cl(1)	2.408(10)	2.422(2)	2.416(6)
Ru(1)-C(2)		1.895(8)	1.895(2)

 Table S2. Selected bond distances (Å) and bond angles for complexes 1-3.

Bond Angles (°)	1	2	3
C(1)-Ru(1)-N(2)	95.40(14)	92.6(4)	93.00(11)
C(1)-Ru(1)-N(1)	95.80(13)	92.2(3)	92.18(9)
N(2)-Ru(1)-N(1)	79.11(11)	174.5(3)	173.08(9)
C(1)-Ru(1)-O(3)	177.86(14)	89.0(3)	89.26(8)
N(2)-Ru(1)-O(3)	86.34(10)	105.0(3)	106.37(8)
N(1)-Ru(1)-O(3)	83.31(10)	77.7(2)	78.28(6)
C(1)-Ru(1)-P(1)	91.59(11)	89.7(3)	89.83(7)
N(2)-Ru(1)-P(1)	83.85(8)	94.5(3)	92.02(7)
N(1)-Ru(1)-P(1)	161.97(8)	82.89(17)	83.41(5)
O(3)-Ru(1)-P(1)	89.82(7)	160.45(15)	161.61(5)
C(1)-Ru(1)-Cl(1)	88.96(13)	175.1(2)	173.32(7)
N(2)-Ru(1)-Cl(1)	173.24(8)	88.8(3)	87.88(8)
N(1)-Ru(1)-Cl(1)	95.35(9)	86.60(18)	87.51(5)
O(3)-Ru(1)-Cl(1)	89.19(8)	86.1(2)	84.13(5)
P(1)-Ru(1)-Cl(1)	101.22(3)	94.87(7)	96.76(2)