Supporting Information

Heterojunction-Redox Catalysts of Fe_xCo_yMg₁₀CaO for High-Temperature CO₂ Capture and In-situ Conversion

Bin Shao ^a, Guihua Hu^b, Khalil A. M. Alkebsi^b, Guanghua Ye^c, Xiaoqing Lin ^a, Wenli

Du^b, Jun Hu^{a*}, Meihong Wang^{d*}, Honglai Liu^a, Feng Qian^b

^{a.} School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

^{b.} Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

 ^c State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

^{d.} Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, United Kingdom.

Adsorption kinetics

To investigate kinetics of adsorption of CO_2 on synthesized $Fe_xCo_yMg_{10}CaO$ and CaO, the following the pseudo-second order model was used.¹

$$q_{t} = \frac{kq_{e}^{2}t}{1+kq_{e}t} \tag{1}$$

where,

k = reaction rate constant of the pseudo-second order model in g mmol⁻¹ min⁻¹.

 $q_{\rm e}$ = amount adsorbed at equilibrium in mmol g⁻¹

 q_t = amount adsorbed (in mmol g⁻¹) at time t in min

Computer modeling and simulation study

To study the scalability of proposed novel technology at the commercial scale, we carried out a computer modeling and simulation study through gPROMS ModelBuilder[®](V4.0). As we mentioned in the manuscript, the energy consumed by the high-temperature thermal cracking furnace in the ethylene industry is usually provided by the combustion of natural gas. It is reported that manufacturing one ton of ethylene produces between 1 to 2 tons of CO₂. A 100,000 t/yr ethylene plant, corresponding to 100,000 t/yr CO₂ emission, was selected as the CO₂ resource to study the scalability of this integrated CaL/RWGS process.

The simulation equations of CO_2 adsorption and conversion, the simulation parameters of each process and the available fundamental experimental data are as following:

(1) Models and boundary conditions of the CO₂ adsorption process

Mass balance

$$\varepsilon \frac{\partial C_i}{\partial t} + (1 - \varepsilon) \rho \frac{\partial q_i}{\partial t} = \varepsilon \frac{\partial}{\partial z} \left(D_{ax} \frac{\partial C_i}{\partial z} \right) - \frac{\partial \left(uC_i \right)}{\partial z}$$

$$C_i = C_{i,0} \quad at \ t = 0, \ 0 \le z \le L$$

$$\frac{\partial C_i}{\partial z} = 0 \quad at \ z = L, \ t > 0$$

$$D_{ax} \frac{\partial C_i}{\partial z} = u(C_i - C_{i,0}) \quad at \ z = 0, \ t > 0$$
(2)

Adsorption isotherm

$$q = q_{sat} \frac{bP_{CO_2}}{1 + bP_{CO_2}} \tag{3}$$

Energy balance

$$\varepsilon C_t C_{p,v} \frac{\partial T}{\partial t} + (1 - \varepsilon) \rho C_{ps} \frac{\partial T}{\partial t} = -u C_t C_{p,p} \frac{\partial T}{\partial z} + (1 - \varepsilon) \rho (-\Delta H) \frac{\partial q_i}{\partial t}$$
(4)

$$T = T_0 \quad at \ t = 0, \ 0 \le z \le L$$

$$\frac{\partial T}{\partial z} = 0 \quad at \ z = L, t > 0$$

$$T = T_0$$
 at $z = 0, t > 0$

Simulation parameters of the CO_2 adsorption process

Inlet flue gas temperature	923 K
Pressure at the fixed-bed column	1 atm
CO ₂ molar concentration in inlet flue gas	1.32 mol m ⁻³

adsorbent density	1600 kg m ⁻³
porosity of bed	0.35
Flue gas flow rate	10 m s ⁻¹
bed length	10 m
Reactor diameter	2.5 m
Molar heat capacity at constant volume	20.7 J mol ⁻¹ K ⁻¹
Molar heat capacity at constant pressure	29.1 J mol ⁻¹ K ⁻¹
Heat capacity of adsorbent	1000 J kg ⁻¹ K ⁻¹
axial back-mixing	$1e^{-5} m^2 s^{-1}$
Total concentration of flue gas	13.2 mol m ⁻³

(2) Models and boundary conditions of the conversion process

Mass balance

$$\varepsilon \frac{\partial C_{\mathrm{H}_{2}}}{\partial t} = \varepsilon \frac{\partial}{\partial z} \left(D_{ax} \frac{\partial C_{\mathrm{H}_{2}}}{\partial z} \right) - \frac{\partial \left(u C_{\mathrm{H}_{2}} \right)}{\partial z} - (1 - \varepsilon) \rho k \frac{q}{q_{sat}} \frac{C_{\mathrm{H}_{2}}}{C_{\mathrm{H}_{2},in}}$$
(5)

$$\frac{\partial q}{\partial t} = k \frac{q}{q_{sat}} \frac{C_{\rm H_2}}{C_{\rm H_2,b}} \tag{6}$$

$$C_{CO} = C_{CO,in} + C_{H_2,in} - C_{H_2}$$
(7)

$$C_{H_2O} = C_{H_2O,in} + C_{H_2,in} - C_{H_2}$$
(8)

Energy balance

$$\varepsilon C_t C_{p,v} \frac{\partial T}{\partial t} + (1 - \varepsilon) \rho C_{ps} \frac{\partial T}{\partial t} = -u C_t C_{p,p} \frac{\partial T}{\partial z} + (1 - \varepsilon) \rho (-\Delta H) \frac{\partial q_i}{\partial t}$$
(9)

(10)

$$C_{H_2} = 0 \ at \ t = 0, \ 0 \le z \le L$$

$$\frac{\partial C_{H_2}}{\partial z} = 0 \quad at \ z = L, t > 0$$

$$D_{ax} \frac{\partial C_{H_2}}{\partial z} = u(C_{H_2} - C_{H_2,0}) \text{ at } z = 0, t > 0$$

$$T = T_0$$
 at $t = 0, 0 \le z \le L$

$$\frac{\partial T}{\partial z} = 0 \quad at \ z = L, t > 0$$

$$T = T_0$$
 at $z = 0, t > 0$

Simulation parameters of the conversion process

H ₂ inlet temperature	923 K
Pressure at the fixed-bed column	1 atm
H ₂ molar concentration	13.2 mol m ⁻³
adsorbent density	1600 kg m ⁻³
porosity of bed	0.35
H ₂ flow rate	1 m s ⁻¹
bed length	10 m
Reactor diameter	2.5 m
Molar heat capacity at constant volume	20.7 J mol ⁻¹ K ⁻¹
Molar heat capacity at constant pressure	29.1 J mol ⁻¹ K ⁻¹
Heat capacity of adsorbent	1000 J kg ⁻¹ K ⁻¹

axial back-mixing	$1e-5 m^2 s^{-1}$
Total concentration of flue gas	13.2 mol m ⁻³

Thermodynamic and kinetic experimental data for CO₂ adsorption and conversion reaction.

Adsorption process			
10.21			
0.27			
-177			
Conversion process			
0.08			
213			
52.97			

To simulate the ethylene plant with an annual production of 100,000 tons, corresponding to 100,000 tons CO_2/yr emission, the column of the integrated CaL/RWGS process is set as 2,500 mm ×10,000 mm, and 50 t Fe₅Co₅Mg₁₀CaO (with the CO₂ adsorption capacity of 9 mol kg⁻¹) are used to operate the integrated CaL/RWGS process. As shown in **Fig. S15a**, when the flow rate of the flue gas (10 vol. % CO₂) is set as 10 m s⁻¹, the breakthrough time is calculated as 7200 s, corresponding to the total throughput of 138 t flue gas and 19.5 t CO₂ (the capture efficiency of about 95%). Meanwhile, when the temperature of the inlet flue gas is set at 650°C, the temperature profile reveals an increase of the local temperature of the reactor to the maximum of 884°C due to the exothermic adsorption process (**Fig. S15c**). With the heat carried out by the flow gas, the overall temperature of the column is relatively stable during the adsorption process.

After the breakthrough of the CaL process, the feed gas is switched to pure H_2 with the flow rate of 1 m s⁻¹ and the temperature of 650 °C. As the fast reaction rate of RWGS

conversion (reaction rate constant k = 0.08 mol min⁻¹ kg⁻¹), H₂ reacts with the adsorbed CO₂ to produce CO immediately. During the initial 2400 seconds, the produced CO holds a stable concentration of 13.2 mol m⁻³ in the outlet; when the reaction continues, the gradually decreased CO₂ concentration leads to the incomplete reaction of H₂. Overall, the CO₂ conversion reaches as high as 90% with the CO selectivity of 100% at 7200 s (**Fig. S15b**). During the conversion process, we can control the molar ratio of CO to H₂ in the outlet by stopping the reaction at an appropriate time and provide syngas for the further downstream Fischer-Tropsch synthesis.

As the RWGS reaction is endothermic, an extra heat needs to be supplied to maintain a relatively constant temperature during the conversion process. Particularly, when the heat released in the first adsorption stage is reused and an extra heat of 36 kJ mol⁻¹(CO₂) is input in in this conversion stage, the temperature profile shows a small temperature drops of about 20 °C in the middle of the column (**Fig. S15d**). Overall, the temperature holds at 650°C throughout the conversion process.

The CO_2 capture capacity and conversion efficiency holds almost constant after 10 cycles (**Fig.S16**). Therefore, the simulation study showed a stable performance of the simultaneous CO_2 capture and in-situ conversion at the commercial scale.

Economic evaluation

To capture around 100,000 t/yr pure CO₂ emission in an ethylene plant, the flow rate of the flue gas (10 vol% CO₂) is set as 8.4 x 10⁴ kg/h with assuming the yearly operating time as 8000 h/yr. Based on the temperature profile of the thermal cracking furnace in ethylene plant, the flue gas with the temperature of 650 °C is directed into the column filled with the bifunctional adsorbent/catalyst of $Fe_5Co_5Mg_{10}CaO$.

(1) CO_2 adsorption at 650 °C and at normal pressure through CaL, with the CO_2 capture efficiency of 95%, the treated gas is released.

(2) CO₂ conversion at the same temperature of 650 °C and at atmospheric pressure. By switching the flue gas into pure H₂, CO is produced through RWGS reaction. The syngas of CO and H₂ with proper molar ratio is produced in the outlet for the downstream Fischer-Tropsch synthesis. Without any additional desorption process, $Fe_5Co_5Mg_{10}CaO$ is regenerated for the next cycle of CO₂ adsorption and conversion.

The main energy consumption during this integrated CaL/RWGS process (Fig. S17 in revised SI) includes electric work of the blower for the gas transport, the heat for heating H₂ from 25°C to 650°C, and the heat for maintaining the conversion temperature at 650 °C due to the endothermic RWGS reaction.

The electric work of the blower W_b is calculated by

$$W_{\rm b} = Q \times p \times t \,/\eta_0 \tag{11}$$

where Q (m³/h) is the flow rate, p (Pa) is the gas pressure, t is working time (h), η_0 is the efficiency of blower, usually, $\eta_0=0.75^2$. The electric work of gas blower includes three parts, for flue gas, H₂ and the reuse of flue gas.

The heat Q_1 for heating H₂ from 25 °C to 650 °C is calculated by

$$Q_1 = n \times C_p \times (T_2 - T_1) \tag{12}$$

where $n \pmod{1}$ is amount of H₂ necessary for the conversion, $C_p (J/\text{mol } K)$ is the average heat capacity of H₂, T_1 and T_2 are the initial temperature (298 K) and final temperature (923 K) of H₂. Q_1 is provided by the combustion of natural gas, therefore, the total amount of natural gas (n_{NG}) needs

$$n_{\rm NG} = Q_1 / (Q_{\rm NG} \times \eta_1 \times 22.4)$$
 (13)

where $Q_{\rm NG}$ (kJ/L³ (STP)) is the heat value of the natural gas, with the value of 34.3 kJ/L³ (STP)³, η_1 is heating efficiency, usually, $\eta_1 = 0.75$ ⁴.

The heat Q_2 for maintaining the conversion temperature at 650 °C is calculated by

$$Q_2 = n_{\rm CO2} \times \left(\Delta H_{\rm ad} + \Delta H_{\rm RWGS}\right) / \eta_2 \tag{14}$$

where n_{CO2} (mol) is amount of CO₂, ΔH_{ad} is the reaction enthalpy of the exothermic CaL, ΔH_{RGWS} is the reaction enthalpy of the endothermic RGWS reaction, η_2 is the efficiency of the heat exchange, usually η_2 =0.8. Q_2 is provided by the electricity, therefore, the total amount of electricity, W_{h} , is

$$W_{\rm h} = Q_2 / \eta_3 \tag{15}$$

where η_3 is the efficiency of the heating, usually $\eta_3=0.95$.

The flue gas is simplified as 10 vol% $CO_2 + 90$ vol% N₂. Based on the scale-up experimental and simulation results, the CO₂ capture efficiency is set as 95%, and the conversion efficiency is set as 85% (5% decreases for the unforeseen circumstances), with the CO selectivity of 100%. The molar ratio of H₂ to converted CO₂ is set as 3:1. All the material flow and consumption (per hour) during this integrated CaL/RWGS process for the treatment of 672,000 t/yr (84t/h) flue gas are calculated and listed in **Table S10** and **Table S11**.

The economic analysis of the integrated CaL/RWGS process is listed in Table 2. The operation costs are mainly dominated by materials of H₂ (\$12.5 million/yr) and $Fe_5Co_5Mg_{10}CaO$ (\$0.58 million/yr), electricity for blowers and heating (\$2.16 million/yr), and natural gas for heating (\$1.72 million/yr). Among them, H₂ is the cost-determining factor. In fact, H₂ is a by-product of the ethylene plant, accounting for about 1% of the total output, then the cost of 2000 t/yr H₂ can be saved.⁵ As a result, the operation cost for the integrated CaL/RWGS process is about \$165/t CO₂, much lower than the reported operation cost of separated RWGS process of \$323/t CO₂ ⁶. In addition, the operation cost of the separated CaL process is \$72/t CO₂ in the literature⁷. It is worth to mention, after the CaL process, CO₂ needs to be compressed and

transported, which accounts for at least \$20/t CO₂ for the transport, let alone the huge capital costs of trunk pipeline network and collecting system. ⁸ If we simply combine two reported separated CaL and RWGS process together, the operation cost will account for at least \$393/t CO₂. Therefore, based on the novel adsorbent and catalyst of **Fe₅Co₅Mg₁₀CaO**, the integrated CaL/RWGS process can be applied to the ethylene plants more cost-effectively. About 67% of unreacted H₂ remains in the outlet, together with converted CO, they form a syngas (the molar ratio of H₂:CO=2:1) for the downstream Fischer-Tropsch synthesis, which will account for \$9.38 million/yr, almost covering the total cost of integrated CaL/RWGS process. Moreover, with CO₂ capture and conversion taking place in the same column, it will save a great deal of capital costs.

Overall, energy recovery directly using high-temperature flue gas to realize the CO_2 capture and to provide the required energy for simultaneous conversion, the integrated CaL/RWGS technology provides a promising way for the green manufacturing in chemical industries.

Figures and Tables

Fig. S2 (a) N₂ adsorption-desorption isotherms and (b) pore size distribution of Fe_xCo_yMg₁₀CaO.

Fig. S3 The XRD patterns of Fe_xCo_yMg₁₀CaO (Fe/Co=0.5, 2, 3, 4).

Fig. S4 The XPS spectra of (a) the elemental survey scan of Ca, Mg, Fe, Co, respectively and (b) Ca2p. XPS spectra of $Fe_xCo_yMg_{10}CaOs$.

Fig. S5 Dynamic CO₂ uptakes from the simulated flue gas (the molar ratio of CO₂:N₂=1:9) in the temperature range of 30 °C to 900 °C on(a) $Fe_{10}Mg_{10}CaO$ and (b) $Co_{10}Mg_{10}CaO$.

Fig. S6 adsorption kinetic curves and pseudo-second-order kinetic fitting curves of $Fe_xCo_yMg_{10}CaO$ and CaO at 650 °C.

Fig. S7 Dynamic CO₂ desorption performance on $Fe_5Co_5Mg_{10}CaO$ purged by pure N₂ in the temperature range of 30-900°C.

Fig. S8 10 cycles CO₂ adsorption-desorption stability on Fe_xCo_yMg₁₀CaO and CaO at 650°C.

Fig. S9 CO₂ adsorption and CO production under the inlet gas with (a) various H₂ contents and (b) various H₂ GHSV on $Fe_5Co_5Mg_{10}CaO$ at 650 °C.

Fig. S10 Molar flow rate of CO produced on $Fe_xCo_yMg_{10}CaO$ (with different Fe/Co mass ratios) under the optimal conversion conditions (at 650 °C and the flow rate H₂ of 50mL/min).

Fig. S11 (a) SEM image and (b) XRD patterns of $Fe_5Co_5Mg_{10}CaO$ after 10 cyclic integrated CO_2 capture and in-situ conversion.

Fig. S12 the high-resolution XPS spectra of (a) Ca 2p, (b) O1s, (c) Fe 2p, and (d) Co 2p of Fe₅Co₅Mg₁₀CaO at different stages of fresh, after adsorption and after conversion.

Fig. S13 Mott-Schottky plots of (a) $Co_{10}Mg_{10}CaO$; (b) $Fe_{10}Mg_{10}CaO$, and (c) $Fe_5Co_5Mg_{10}CaO$.

Fig. S14 The CO_2 adsorption breakthrough curves of simulated flue gas at the different flow rates. on 25 g $Fe_5Co_5Mg_{10}CaO$ at 650 °C

Fig. S15. Simulation profiles of the integrated CO_2 capture and conversion technology at the commercial scale (100,000 t/yr CO_2 emission) on 50 t **Fe₅Co₅Mg₁₀CaO** (a) the change of CO_2 concentration in the outlet with the time at the CaL adsorption stage, (b) the change of CO_2 , CO, and H₂ concentrations with the time at the in-situ RGWR conversion stage. The temperature change profiles with time along the column at (c) the adsorption stage and (d) the conversion stage.

Fig. S16 Stability simulation of 10 cycles of the integrated CaL/RWGS process at the commercial scale (100,000 t/yr CO₂ emission) at 650°C on 50 t **Fe₅Co₅Mg₁₀CaO**.

Fig. S17 Schematic illustration of the integration of this CO_2 capture and in-situ conversion technology with a 100,000 t /yr ethylene plant, which works alternatively in the sequence of CaL capture and RWGS conversion in the manner of shifting between two columns.

Fig. S18 The main energy-consumption units during the integrated CaL/RWGS process.

		• • •		•	-	, .	
Sample	weight ratio of	^a Mas	ss fractio	on (W _{t.}	^b CaO	^c S _{BET}	
	Fe/Co		%)		(nm)	$(m^2 g^{-1})$	(cm ³ g ⁻¹)
		Fe	Co	Mg	_		
Fe ₁₀ Mg ₁₀ CaO	Fe	9.2	n.a.	9.3	38.4	21.4	0.079
Co10Mg10CaO	Со	n.a.	9.3	9.4	33.6	17.8	0.068
Fe ₅ Co ₅ Mg ₁₀ CaO	1	4.3	4.6	9.5	28.3	15.6	0.061
Fe _{6.7} Co _{3.3} Mg ₁₀ CaO	2	5.8	2.7	8.8	32.1	16.7	0.070
Fe _{7.5} Co _{2.5} Mg ₁₀ CaO	3	6.2	1.9	7.8	34.8	14.99	0.068
Fe ₈ Co ₂ Mg ₁₀ CaO	4	7.2	1.2	8.5	30.8	13.39	0.063
Fe _{3.3} Co _{6.7} Mg ₁₀ CaO	0.5	2.6	5.9	9.0	40.7	9.07	0.051

 $Table \ S1 \ {\rm Characteristic \ properties \ of \ elemental \ analysis, \ crystallite \ size \ and \ porosity \ of \ Fe_x Co_y Mg_{10} CaO.}$

^a measured by ICP

$$D_p = \frac{0.94\gamma}{\beta_{1/2} \cos \theta}$$

^c BET surface areas

^b average crystallite size calculated by

^d Total pore volume at a relative pressure (P/P⁰) of 0.99

Sample	Co ²⁺ (eV)	Co ³⁺ (eV)	Fe ²⁺ (eV)	Fe ³⁺ (eV)
Fe ₅ Co ₅ Mg ₁₀ CaO	781.9	780.8	710.6	713.2
Fe ₁₀ Mg ₁₀ CaO	/	/	710.9	713.8
Co ₁₀ Mg ₁₀ CaO	781.5	780.6	/	/

Table S2. Binding energies of $2p_{3/2}$ electrons of Co and Fe species in the fresh $Fe_xCo_yMg_{10}CaO$.

Table S3. Fitting parameters of the pseudo-second-order kinetic model for CO_2 captureon $Fe_xCo_yMg_{10}CaO$ and CaO.

Samples	Pseudo-second-order	k	q e	R ²
	Kinetic equation	(g mmol ⁻¹ min ⁻¹)	(mmol g ⁻¹)	
CaO	$t/q_t = 0.10699t + 0.17669$	0.0609	9.34	0.9967
Fe ₁₀ Mg ₁₀ CaO	$t/q_t = 0.1033t + 0.2613$	0.0415	9.68	0.9996
Co10Mg10CaO	$t/q_t = 0.09893t + 0.46352$	0.0211	10.11	0.9993
Fe ₅ Co ₅ Mg ₁₀ CaO	$t/q_t = 0.1006t + 0.0929$	0.1064	9.93	0.9995

catalyst	Temperature	CO ₂	CO	Stability (CO ₂	References
		conversion	selectivity	conversion)	
	(°C)	(%)	(%)		
Fe ₅ Co ₅ Mg ₁₀ CaO	650	90	100	10 cycles	this work
10% Ni	650	38	95	50 h	11
10%Co	600	38	100	/	12
Ni/CeAl	650	62	78	/	13
Ni/CeAl	750	68	95	45 h	13
$Ca_1Ni_{0.1}Ce_{0.033}$	650	51.8	100	20 cycles	14
Fe-Mo/Al ₂ O ₃	600	36	35	/	15
Co-Fe/Al ₂ O ₃	650	50	48	/	16
Fe-oxide	600	31	/	19 h	17
magnetite	600	21.3	85	/	17
Fe/Al ₂ O ₃	650	56	97	40 h	18

Table S4. The comparison of CO_2 conversion performance with the state-of-the-art works.

$\overline{\ }$	Sample	Fresh	After adsorption	After conversion
Iron sta	itus			
Fe ²⁺		710.6 eV	710.3 eV	710.2 eV
		724.5 eV	723.9 eV	723.8 eV
Fe ³⁺		713.2 eV	712.7 eV	712.6 eV
		727.3 eV	726.3 eV	726.2 eV
satellite		718.6 eV	718.4 eV	718.2 eV

Table S5. Binding energy of $2P_{1/2}$ and $2P_{3/2}$ electrons of the Fe₅Co₅Mg₁₀CaO at different stages from high-resolution Fe 2p XPS spectra.

Table S6. Binding energy of $2P_{1/2}$ and $2P_{3/2}$ electrons of the Fe₅Co₅Mg₁₀CaO at different stages from high-resolution Co 2p XPS spectra.

\leq	Sample	Fresh	After adsorption	After conversion
cobalt	status			
Co ²⁺		797.8 eV	797.8 eV	797.8 eV
		781.9 eV	781.5 eV	781.5 eV
Co ³⁺		780.8 eV	780.6 eV	780.6 eV
		795.8 eV	795.8 eV	795.8 eV
satellite	e	786 eV	786 eV	786 eV
		803 eV	803 eV	803 eV

Fe ²⁺ / Fe ³⁺	Co ²⁺ / Co ³⁺
0.47	1.62
0.54	1.6
0.75	1.59
	Fe ²⁺ / Fe ³⁺ 0.47 0.54 0.75

Table S7. The mass ratio changes of Fe^{2+}/Fe^{3+} and Co^{2+}/Co^{3+} in $Fe_5Co_5Mg_{10}CaO$ at different stages calculated from high-resolution XPS spectra.

Table S8. The comparison between the microscale experiment and the scale-up experiment

Parameters		Microscale	Scale-up	
		experiment	experiment	
Catalyst mas	os (g)	0.25	25	
Catalyst size	(mesh/mm)	40-50/~0.4	10-20/~1.0	
Reactor geor	netry			
inside diame	ter (Φ mm) × height (mm)	Φ 10 ×150	Φ 25 ×500	
Flow rate (m	l min ⁻¹)	50	500	
Operation te	mperature (°C)	650		
Operation pr	essure (atm)		1	
Adsorption	Breakthrough time (min)	25	125	
	Total flue gas throughput (L)	1.25	62.5	
	Total amount of CO ₂ capture (L)	0.05	5.10	
	Adsorption capacity (mmol g ⁻¹)	9.2	9.1	
Conversion	Time of conversion (min)	30	90	
	CO yield (mmol g ⁻¹)	8.28	7.43	
	Carbon balance (%)	100	95	
	CO ₂ conversion (%)	90	87	
	CO selectivity (%)	100	100	

	adsorption			Conversion				
Flow rate (mL/min)	Breakthrough time (min)	Total throughput (L)	CO ₂ adsorption capacity (mmol g-1)	Time of conversion (min)	CO yield (mmol g ⁻¹)	^a Carbon balance (%)	CO ₂ conversion (%)	CO selectivity (%)
200	260	52	9.1	200	7.43	95	87	100
500	125	62.5	9.1	90	7.43	95	87	100
1000	25	25	9.0	/	/	/	/	/
2000	10	20	3.3	/	/	/	/	/

Table S9 the effect of flow rate on the performance of the scale-up integrated CaL/RWGS process at 650 °C on

Fe₅Co₅Mg₁₀CaO.

Note: /. Restricted by our experimental conditions and safety regulations, the conversion at the large flow rate of pure H_2 (>1000ml min⁻¹) was not tested.

Material		Inlet gas	Adsorption (95%)	Conversion (85%)	Release	Product
CO ₂	(t/h)	12.5	11.87	10.02	0.63	1.85
	(kmol/h)	284	269.8	229.3	14.2	40.5
N_2	(t/h)	71.5	0	0	71.5	0
	(kmol/h)	2556			2556	
H_{2}	(t/h)	1.37	0	0.459	0	0.911
	(kmol/h)	687.9		229.3		455.5
СО	(t/h)	0	0	6.42	0	6.42
	(kmol/h)			229.3		229.3
H ₂ O	(t/h)	0	0	4.13		4.13
	(kmol/h)			229.3		229.3
Electricity for gas transport (kWh)		507 a				
Electricity for heating (kWh)				1912		
Natural gas for heating H ₂ (m ³ /h)		376				

 Table S10 Material flows (per hour) in each step during the integrated CaL/RGWR processes.

Note: a, the electricity for gas transport including flue gas (240 kWh), H2 (57 kWh) and treated gas released (210 kWh)

Item	Price ^a	Consumption (/yr)
H ₂	1400 \$/t	8960 t ^b
CO ₂ tax	7 \$/t	100000 t
Syngas	170 \$/t	58648 t
Fe ₅ Co ₅ Mg ₁₀ CaO	3500 \$/t	167 t°
Natural gas for heating H_2^d	0.43 \$/m ³ (STP)	$4 \times 10^{6} \text{ m}^{3}$
Blower (electricity)		4.05×10 ⁶ KWh
Extra heat for RWGS		1.53×10 ⁷ KWh
(electricity)		
Total electricity \$/kWh	0.12 \$/kWh	$1.8 \times 10^7 kWh^e$

Table S11 the price and consumption of each material per year (Assuming the yearly operating time is 8000 h/yr)

Notes:

a, the price is according to the market of China.

b, the total amount of H_2 consumption is 10,960 t/y, including 2,000 t/yr by-product of H_2 in the 100,000 t/yr ethylene plant.

c, the amount of $Fe_5Co_5Mg_{10}CaO$ in one column is 50 t, the cycle stability is set as 100 days, i.e. the consumption of $Fe_5Co_5Mg_{10}CaO$ is 0.5 t/d.

d, heating H₂ by burning nature gas.

e, the total electricity consists of two parts (the blowers and the extra heating for RWGS).

References

- 1. Y. Ho and G. Mckay, *Process Biochem.*, 1999, **34**, 451-465.
- 2. Turton, R., Bailie, R.C., Whiting, W.B., Shaeiwitz, J.A., Bhattacharyya, D., 2012. Analysis, Synthesis, and Design of Chemical Processes, 4th ed. Prentice Hall
- 3. J. Baltrusaitis and W. L. Luyben, ACS Sustainable Chem. Eng., 2015, 3, 2100-2111.
- P. R. Kumar, H. B. Yahia, I. Belharouak, M. T. Sougrati, S. Passerini, R. Amin and R. Essehli, J. Solid State Electrochem., 2019, 24, 17-24. Baltrusaitis and W. L. Luyben, *ACS Sustainable Chem. Eng.*, 2015, 3, 2100-2111.
- 5. D.-Y. Lee and A. Elgowainy, Int. J. Greenh. Gas Control, 2018, 43, 20143-20160.
- 6. E. Rezaei and S. Dzuryk, Chem. Eng. Res. Des., 2019, 144, 354-369.
- 7. J. Baltrusaitis and W. L. Luyben, ACS Sustainable Chem. Eng., 2015, 3, 2100-2111.
- X. Luo, M. Wang, E. Oko and C. Okezue, Appl. Energy, 2014, 132, 610-620.5. L.Wang,H.Liu,
 Y. Chen and S. Yang, *Int. J. Hydrogen Energy*, 2017, 42, 3682-3689.
- A. Ranjbar, A. Irankhah and S. F. Aghamiri, *Journal of Environmental Chemical Engineering*, 2018, 6, 4945-4952.
- 12. L. Wang, H. Liu, Y. Chen and S. Yang, Int. J. Hydrogen Energy, 2017, 42, 3682-3689.
- L. Yang, L. Pastor-Pérez, S. Gu, A. Sepúlveda-Escribano and T. Reina, *Applied Catalysis B:* Environmental, 2018, 232, 464-471.
- 14. H. Sun, J. Wang, J. Zhao, B. Shen, J. Shi, J. Huang and C. Wu, *Appl. Catal.*, *B*, 2019, **244**, 63-75.
- 15. A. G. Kharaji, A. Shariati and M. Ostadi, *Journal of nanoscience and nanotechnology*, 2014, **14**, 6841-6847.
- 16. S. Sengupta, A. Jha, P. Shende, R. Maskara and A. K. Das, *Journal of Environmental Chemical Engineering*, 2019, **7**.
- 17. D. H. Kim, S. W. Han, H. S. Yoon and Y. D. Kim, J. Ind. Eng. Chem., 2015, 23, 67-71.
- 18. L. Pastor-Pérez, M. Shah, E. le Saché and T. Ramirez Reina, *Catalysts*, 2018, **8**, 608.