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Table S1. Key processing and refinement parameters of CuGe2P3 sample.

Compound CuGe2P3

Crystal System Cubic
Space Group F-43m
Point Group CF6

a Å 5.354425
V Å3 153.511

2θ-interval º
Z

5-130
1

Rwp% 1.64
Rp% 1.28
ꭓ2 1.594

Table S2. Fractional atomic coordinates and isotropic displacement parameters (Å2) of CuGe2P3.

x y z Uiso Occ
Cu 0 0 0 0.25128 0.333
Ge 0 0 0 0.25128 0.667
P 0.25 0.25 0.25 0.00689 1

Table S3. Synchrotron radiation angle information of the CuGe2P3.

CuGe2P3 Powder
2θ 4.435° 5.03° 7.258° 7.616° 8.506° 10.266° 11.187° 12.576° 13.344°

Relative 

intensity
100 10.46 54.3 6.97 29.17 8.07 11.82 12.25 7.24

Fig. S1. Morphology characterizations of CuGe2P3 compound at low magnification: a) The FESEM image; b) the TEM image.
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Fig. S2. HRTEM image of as-synthesized cubic CuGe2P3.

Fig. S3. Raman spectroscopy of the cation-disordered CuGe2P3 compound.

Fig. S4. a) Initial three CV curves and b) initial three discharge-charge profiles of the cation-disordered CuGe2P3 compound; c) voltage profiles 

of different cycling conditions of CuGe2P3 compound at 100 mA h g-1.
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Fig. S5. Typical discharge-charge curves and cycle performance of the cation-disordered CuGe2P3 compound without any conductive agents.

Fig. S6. The crystal structure of Li3CuGe2P3, which derived from the Li-insertion voids within the crystal structure of the cation-disordered 

CuGe2P3 compound.

Fig. S7. Binding energies of cation-disordered CuGe2P3 with various Li atom number inserted in the voids by first-principles calculations.
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Fig. S8. The corresponding supercell models in Fig. S7.

Fig. S9. The enlarged XRD patterns at the state of discharging to 0.4 V and charging to 0.85 V.
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Fig. S10. High-resolution XPS spectra of the cation-disordered CuGe2P3 compound electrodes after initial cycling, the discharge state of 5 mV, 

pristine CuGe2P3 sample and raw materials of Ge, P and Cu.

Fig. S11. The ex-situ high-resolution synchrotron X-ray diffraction patterns of CuGe2P3 anodes at different potentials.
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Fig. S12. Ex-situ HRTEM images of the cation-disordered CuGe2P3 compound anodes at different potentials.

Fig. S13. Simulation models utilized for first-principles calculations of the cation-disordered CuGe2P3 and Ge.

Fig. S14. Band structures of the cation-disordered CuGe2P3.
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Fig. S15. Electrochemical impedance spectroscopy of the cell with a) ball milled Cu+2Ge+3P samples and, b) ball milled Ge powder.

Table S4. The tested electronic conductivity of the CuGe2P3-based electrode (CuGe2P3: carbon black: binder = 7: 2: 1), CuGe2P3 powder, Ge 

powder, the mixed Cu+2Ge+3P powder and red P powder under the mild pressure and room temperature.

Materials Conductivity (S m-1)
CuGe2P3 electrode 331

CuGe2P3 68
Ge 0.089

mixed Cu+2Ge+3P 0.03
red P less than 10-5

Fig. S16. Typical Li-ion migration paths of the cation-disordered CuGe2P3 and Ge.
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Fig. S17. a), d) and g) Galvanostatic intermittent titration technique (GITT) profiles during first-cycle discharge-charge of LIBs utilizing the ball 

milled Cu+2Ge+3P samples; b), e) and h) typical schemes for single-step of GITT experiments of LIBs utilizing the ball milled Cu+2Ge+3P 

samples; c), f) and l) dE/dt(1/2) curves from b), e) and h) of LIBs the ball milled Cu+2Ge+3P samples.

Fig. S18. a) Galvanostatic intermittent titration technique (GITT) profiles during pristine discharge and charge of LIBs utilizing milled Ge as 

electrodes; b) the typical schemes for single-step of GITT experiments of LIBs utilizing milled Ge as electrodes; c) dE/dt(1/2) curves from b) of 

LIBs utilizing milled Ge as electrodes.
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Fig. S19. SEM images of the cation-disordered CuGe2P3 compound and milled Ge electrodes: a) milled Ge electrodes before cycling, b) milled 

Ge electrodes after 20 cycles at 100 mA g-1, c) cation-disordered CuGe2P3 compound electrodes before cycling, d) the cation-disordered 

CuGe2P3 compound electrodes after 20 cycles at 100 mA g-1.

Fig. S20. a) XRD pattern and b) HRTEM image of the amorphous carbon-coated the cation-disordered CuGe2P3 compound. The broadened 

XRD diffraction peaks and the low intensity, along with the disappearance of graphite indicate that the particle size of the as-synthesized 

CuGe2P3 was significantly decreased and embedded into the amorphous carbon.
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Fig. S21. a-b) TGA curves of CuGe2P3/C@Graphene and b) the CuGe2P3 compound; c) XRD pattern of CuGe2P3 under 400oC in air for 3h.

Note that the carbon content is calculated as follows:
Carbon content in the composite is x and CuGe2P3 is y.

x + y =1 (Equation 1);
1.19y = 0.92 (Equation 2).

According to the above equations, the carbon content (x) can be obtained to be 22.69 %, which is close to the feed ratio of the two 
components.
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Fig. S22. Low magnification TEM image and elemental mappings of CuGe2P3/C@Graphene.

Fig. S23. Voltage profiles of different cycling conditions of CuGe2P3/C@Graphene at 200 mA h g-1.
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Fig. S24. BET curves of a) CuGe2P3/C@Graphene and b) Cation-disordered CuGe2P3 compound.

Fig. S25. The LiFePO4//CuGe2P3/C@Graphene full cell: a) a schematic sketch of the full cell; b) the first five discharge-charge profiles; c) cycle 
performance.
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Table S5. Performances comparisons of CuGe2P3/C@Graphene with recently reported Ge-based anodes in terms of initial Coulombic 

efficiency and long cycling stability.

Materials Cycle performance Initial Coulombic efficiency References
CuGe2P3/C@Graphene 0.02 A g-1, 600 cycles, 1312 mA h g-1 91% This work

Li2GeO3 0.05 A g-1, 300 cycles, 725 mA h g-1 56% [49]
Ge0.90Ga0.10 0.32 A g-1, 150 cycles, 1146 mA h g-1 85% [50]

GeP3/C 0.1 A g-1, 130 cycles, 1109 mA h g-1 73.8% [51]
GeSn 0.2 C, 25 cycles, 1040 mA h g-1 83% [52]

Ge0.85Te0.15 1 C, 500 cycles, 1002 mA h g-1 70.4% [53]
GeS 0.16 A g-1, 100 cycles, 1150 mA h g-1 78% [54]

3D-pGe 1.147 A g-1, 250 cycles, 770 mA h g-1 92.3% [55]
Si-Ge hNWs 1 C, 400 cycles, 300 mA h g-1 74.7% [56]
Ge3N4@C 0.69 A g-1, 300 cycles, 660 mA h g-1 78% [57]
NPGeNFs 3 C, 500 cycles, 678 mA h g-1 81.8% [58]
Ge2Sb2Se5 0.5 C, 100 cycles, 626 mA h g-1 68% [59]

Ge-HS/GNs 0.8 A g-1, 500 cycles, 1182 mA h g-1 83.6% [60]
rGO/Ge/rGO 1.6 A g-1, 500 cycles, 1085 mA h g-1 69.6% [61]
Ge (ZnRR) 0.08 A g-1, 300 cycles, 1030 mA h g-1 81% [62]
Li2TiGeO5 1 A g-1, 600 cycles, 406 mA h g-1 68% [63]
Ge@MoS2 7 A g-1, 100 cycles, 594 mA h g-1 79.6% [64]

Ge-S-C 0.1 A g-1, 100 cycles, 1114 mA h g-1 77.7% [65]
Fe-GeO2 1 A g-1, 100 cycles, 1114 mA h g-1 58.76% [66]

Fig. S26. Evolved XRD patterns of the Cu(Zn)-Ge-P samples of Cu(Zn)+2Ge+3P, Cu(Zn)+3Ge+4P, and Cu(Zn)+4Ge+5P samples.
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Fig. S27. Initial three discharge-charge curves of the cation-disordered Cu(Zn)-Ge-P compounds (Cu(Zn)Ge2P3 → Cu(Zn)Ge3P4 → Cu(Zn)Ge4P5.

Fig. S28. Typical discharge profiles of the cation-disordered Cu-Ge-P compounds (CuGe2P3 → CuGe3P4 → CuGe4P5), commercial Ge and P/C 

electrodes.


