Journal Name

Supporting Information

Novel Cu(Zn)-Ge-P compounds as advanced anode materials for Li-ion batteries

Wenwu Li,*^{a,b} Pengfei Shen,^b Lufeng Yang,^c Anjie Chen,^d Jeng-Han Wang,^d Yunyong Li^b, Hailong Chen,^c and Meilin Liu*^a

- a. School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- b. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China.
- c. The Woodruff school of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
- d. Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.

ARTICLE

Journal Name

Table S1. Key processing and refinement parameters of CuGe₂P₃ sample.

Compound	CuGe ₂ P ₃
Crystal System	Cubic
Space Group	F-43m
Point Group	CF6
a Å	5.354425
V Å ³	153.511
20-interval °	5-130
Z	1
Rwp%	1.64
Rp%	1.28
2	1.594

Table S2. Fractional atomic coordinates and isotropic displacement parameters (Å²) of CuGe₂P₃.

	х	у	Z	U _{iso}	Occ
Cu	0	0	0	0.25128	0.333
Ge	0	0	0	0.25128	0.667
Р	0.25	0.25	0.25	0.00689	1

Table S3. Synchrotron radiation angle information of the CuGe₂P₃.

CuGe ₂ P ₃ Powder									
20	4.435°	5.03°	7.258°	7.616°	8.506°	10.266°	11.187°	12.576°	13.344°
Relative intensity	100	10.46	54.3	6.97	29.17	8.07	11.82	12.25	7.24

Fig. S1. Morphology characterizations of CuGe₂P₃ compound at low magnification: a) The FESEM image; b) the TEM image.

Fig. S2. HRTEM image of as-synthesized cubic $CuGe_2P_3$.

Fig. S3. Raman spectroscopy of the cation-disordered $CuGe_2P_3$ compound.

Fig. S4. a) Initial three CV curves and b) initial three discharge-charge profiles of the cation-disordered $CuGe_2P_3$ compound; c) voltage profiles of different cycling conditions of $CuGe_2P_3$ compound at 100 mA h g⁻¹.

Fig. S5. Typical discharge-charge curves and cycle performance of the cation-disordered CuGe₂P₃ compound without any conductive agents.

Fig. S6. The crystal structure of Li₃CuGe₂P₃, which derived from the Li-insertion voids within the crystal structure of the cation-disordered CuGe₂P₃ compound.

Fig. S7. Binding energies of cation-disordered CuGe₂P₃ with various Li atom number inserted in the voids by first-principles calculations.

4 | J. Name., 2020, 00, 1-3

Fig. S8. The corresponding supercell models in Fig. S7.

Fig. S9. The enlarged XRD patterns at the state of discharging to 0.4 V and charging to 0.85 V.

Fig. S10. High-resolution XPS spectra of the cation-disordered $CuGe_2P_3$ compound electrodes after initial cycling, the discharge state of 5 mV, pristine $CuGe_2P_3$ sample and raw materials of Ge, P and Cu.

Fig. S11. The ex-situ high-resolution synchrotron X-ray diffraction patterns of CuGe₂P₃ anodes at different potentials.

Journal Name

ARTICLE

Fig. S12. Ex-situ HRTEM images of the cation-disordered CuGe₂P₃ compound anodes at different potentials.

Fig. S13. Simulation models utilized for first-principles calculations of the cation-disordered $CuGe_2P_3$ and Ge.

Fig. S14. Band structures of the cation-disordered $CuGe_2P_3$.

Fig. S15. Electrochemical impedance spectroscopy of the cell with a) ball milled Cu+2Ge+3P samples and, b) ball milled Ge powder.

Table S4. The tested electronic conductivity of the $CuGe_2P_3$ -based electrode ($CuGe_2P_3$: carbon black: binder = 7: 2: 1), $CuGe_2P_3$ powder, Ge powder, the mixed Cu+2Ge+3P powder and red P powder under the mild pressure and room temperature.

Materials	Conductivity (S m ⁻¹)
CuGe ₂ P ₃ electrode	331
CuGe ₂ P ₃	68
Ge	0.089
mixed Cu+2Ge+3P	0.03
red P	less than 10 ⁻⁵

Fig. S16. Typical Li-ion migration paths of the cation-disordered CuGe₂P₃ and Ge.

Fig. S17. a), d) and g) Galvanostatic intermittent titration technique (GITT) profiles during first-cycle discharge-charge of LIBs utilizing the ball milled Cu+2Ge+3P samples; b), e) and h) typical schemes for single-step of GITT experiments of LIBs utilizing the ball milled Cu+2Ge+3P samples; c), f) and l) dE/dt^(1/2) curves from b), e) and h) of LIBs the ball milled Cu+2Ge+3P samples.

Fig. S18. a) Galvanostatic intermittent titration technique (GITT) profiles during pristine discharge and charge of LIBs utilizing milled Ge as electrodes; b) the typical schemes for single-step of GITT experiments of LIBs utilizing milled Ge as electrodes; c) dE/dt^(1/2) curves from b) of LIBs utilizing milled Ge as electrodes.

Fig. S19. SEM images of the cation-disordered $CuGe_2P_3$ compound and milled Ge electrodes: a) milled Ge electrodes before cycling, b) milled Ge electrodes after 20 cycles at 100 mA g⁻¹, c) cation-disordered $CuGe_2P_3$ compound electrodes before cycling, d) the cation-disordered $CuGe_2P_3$ compound electrodes after 20 cycles at 100 mA g⁻¹.

Fig. S20. a) XRD pattern and b) HRTEM image of the amorphous carbon-coated the cation-disordered $CuGe_2P_3$ compound. The broadened XRD diffraction peaks and the low intensity, along with the disappearance of graphite indicate that the particle size of the as-synthesized $CuGe_2P_3$ was significantly decreased and embedded into the amorphous carbon.

Fig. S21. a-b) TGA curves of CuGe₂P₃/C@Graphene and b) the CuGe₂P₃ compound; c) XRD pattern of CuGe₂P₃ under 400°C in air for 3h.

Note that the carbon content is calculated as follows:

Carbon content in the composite is x and CuGe_2P_3 is y.

x + y =1 (Equation 1);

1.19y = 0.92 (Equation 2).

According to the above equations, the carbon content (x) can be obtained to be 22.69 %, which is close to the feed ratio of the two components.

Fig. S22. Low magnification TEM image and elemental mappings of CuGe₂P₃/C@Graphene.

Fig. S23. Voltage profiles of different cycling conditions of $CuGe_2P_3/C@Graphene$ at 200 mA h g⁻¹.

Fig. S24. BET curves of a) CuGe₂P₃/C@Graphene and b) Cation-disordered CuGe₂P₃ compound.

Fig. S25. The LiFePO₄//CuGe₂P₃/C@Graphene full cell: a) a schematic sketch of the full cell; b) the first five discharge-charge profiles; c) cycle performance.

Table S5. Performances comparisons of $CuGe_2P_3/C@Graphene$ with recently reported Ge-based anodes in terms of initial Coulombic efficiency and long cycling stability.

Materials	Cycle performance	Initial Coulombic efficiency	References
CuGe ₂ P ₃ /C@Graphene	0.02 A g ⁻¹ , 600 cycles, 1312 mA h g ⁻¹	91%	This work
Li ₂ GeO ₃	0.05 A g ⁻¹ , 300 cycles, 725 mA h g ⁻¹	56%	[49]
$Ge_{0.90}Ga_{0.10}$	0.32 A g ⁻¹ , 150 cycles, 1146 mA h g ⁻¹	85%	[50]
GeP ₃ /C	0.1 A g ⁻¹ , 130 cycles, 1109 mA h g ⁻¹	73.8%	[51]
GeSn	0.2 C, 25 cycles, 1040 mA h g ⁻¹	83%	[52]
Ge _{0.85} Te _{0.15}	1 C, 500 cycles, 1002 mA h g ⁻¹	70.4%	[53]
GeS	0.16 A g ⁻¹ , 100 cycles, 1150 mA h g ⁻¹	78%	[54]
3D-pGe	1.147 A g ⁻¹ , 250 cycles, 770 mA h g ⁻¹	92.3%	[55]
Si-Ge hNWs	1 C, 400 cycles, 300 mA h g ⁻¹	74.7%	[56]
$Ge_3N_4@C$	0.69 A g ⁻¹ , 300 cycles, 660 mA h g ⁻¹	78%	[57]
NPGeNFs	3 C, 500 cycles, 678 mA h g ⁻¹	81.8%	[58]
$Ge_2Sb_2Se_5$	0.5 C, 100 cycles, 626 mA h g ⁻¹	68%	[59]
Ge-HS/GNs	0.8 A g ⁻¹ , 500 cycles, 1182 mA h g ⁻¹	83.6%	[60]
rGO/Ge/rGO	1.6 A g ⁻¹ , 500 cycles, 1085 mA h g ⁻¹	69.6%	[61]
Ge (ZnRR)	0.08 A g ⁻¹ , 300 cycles, 1030 mA h g ⁻¹	81%	[62]
Li ₂ TiGeO ₅	1 A g ⁻¹ , 600 cycles, 406 mA h g ⁻¹	68%	[63]
Ge@MoS ₂	7 A g ⁻¹ , 100 cycles, 594 mA h g ⁻¹	79.6%	[64]
Ge-S-C	0.1 A g ⁻¹ , 100 cycles, 1114 mA h g ⁻¹	77.7%	[65]
Fe-GeO ₂	1 A g ⁻¹ , 100 cycles, 1114 mA h g ⁻¹	58.76%	[66]

Fig. S26. Evolved XRD patterns of the Cu(Zn)-Ge-P samples of Cu(Zn)+2Ge+3P, Cu(Zn)+3Ge+4P, and Cu(Zn)+4Ge+5P samples.

Fig. S27. Initial three discharge-charge curves of the cation-disordered Cu(Zn)-Ge-P compounds (Cu(Zn)Ge₂P₃ \rightarrow Cu(Zn)Ge₃P₄ \rightarrow Cu(Zn)Ge₄P₅.

Fig. S28. Typical discharge profiles of the cation-disordered Cu-Ge-P compounds ($CuGe_2P_3 \rightarrow CuGe_3P_4 \rightarrow CuGe_4P_5$), commercial Ge and P/C electrodes.