Supplementary Information for

Carotenoids Improve Bacterial Tolerance Towards Biobutanol Through Membrane Stabilization

Geraldine W.N. Chia^{a,b}, Thomas Seviour^{b,c}, Staffan Kjelleberg^{b,d}, Jamie Hinks^{b, §}

^a Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore ^b Singapore Centre for Environmental Sciences Engineering (SCELSE), Nanyang Technological University, Singapore

^cCentre for Water Technology (WATEC), Department of Engineering, Aarhus University, Nørrebrogade 44, DK-8000, Aarhus C, Denmark

^d School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia [§] Corresponding authors: jhinks@ntu.edu.sg

Figure S1. (A) Molar heat capacity (C_p , kJ mol⁻¹ K⁻¹) and full width at half maximum (FWHM, °C) determination. (B) DSC cooling thermogram of control PEPG MLV (C) Change in enthalpy, ΔH (kJ mol⁻¹) and (D) change in entropy, ΔS (kJ mol⁻¹ K⁻¹) as a function of carotenoid concentration.

Figure S2. Representative fluorescence emission spectrum from Laurdan (A, C, E) and Prodan (B, D, F) in control MLVs (A, B), 0.5 mol% LUT-MLVs (C, D) and 0.5 mol% ZEA-MLVs (E, F).

Figure S3. Generalized polarization (GP) measured using Laurdan (A, C) and Prodan (B, D) in control MLVs and MLVs with 0.5 mol% (A, B) or 10 mol% (C, D) carotenoids that were challenged with pentanol up to 1% (v/v).

Figure S4. Butanol disorders acyl tails in MLVs and high carotenoid concentrations mitigate the disordering effects. (A) DSC cooling thermograms of 0.5 mol% LUT-MLVs, (B) 10 mol% LUT-MLVs (C), 0.5 mol% ZEA-MLVs, (D) 10 mol% ZEA-MLVs and (E) control MLVs that were challenged with butanol from 0-3% (v/v).

Figure S5. Calibration curves of lutein and zeaxanthin in methanol.

Figure S6. Fluorescence spectrum of propidium iodide (PI) signal at 630 nm ($\lambda_{ex} = 465$ nm) as a function of increasing butanol concentrations used to treat control cells (A), cells treated with 10 µg/mL lutein (B) and zeaxanthin (C).

Table S1. Average molecular weight of MLVs used in this study. ^aFull width at half maximum (FWHM) values of the main phase transition peaks in the cooling DSC thermograms in Figure 2A and 2B. ^bLutein and zeaxanthin are positional isomers and have the same molecular weight (569), thus the average molecular weights of the MLVs are the same.

Carotenoid concentration/ mol%	Lutein ^a / °C	Zeaxanthin ^a /°C	Molecular weight ^b
0	0.89 ± 0.05	0.89 ± 0.05	726
0.5	0.99 ± 0.08	0.98 ± 0.09	725
1	1.01 ± 0.01	1.07 ± 0.09	724
2.5	1.05 ± 0.12	1.10 ± 0.10	722
5	2.22 ± 1.25	1.30 ± 0.38	718
10	1.2 ± 0.06	1.67 ± 0.46	707

Dutanol/	$\Delta T_{m}^{\circ}C$					
% (v/v)	Control	0.5 mol% Lutein	0.5 mol% Zeaxanthin	10 mol% Lutein	10 mol% Zeaxanthin	
1	4.30 (±0.13)	4.25 (±0.35)	4.21 (±0.20)	4.02 (±0.05)	3.75 (±0.0)	
2	7.22 (±0.35)	6.89 (±0.09)	7.09 (±0.52)	7.11 (±0.04)	6.80 (±0.13)	
3	9.48 (±0.40)	9.85 (±0.11)	10.07 (±0.28)	9.31 (±0.56)	9.14 (±0.57)	

Table S2. ΔT_m calculated from cooling DSC thermograms of control MLVs and MLVS with carotenoids.

Table S3. Parameters to derive K_p from the gradient (*m*) of the linear fit, $\Delta H_{m,0}$, $T_{m,0}$ for control MLVs and MLVs with carotenoids.

MLV	[Carotenoid]/% mol	Gradient, <i>m</i>	$\Delta H_{m,0}$ / kJ mol ⁻¹	<i>T_{m,0}/</i> ⁰ C
Control	-	30.8 (±0.4)	21.5 (±1.5)	21.7 (±0.1)
Lutein	0.5	31.1 (±0.6)	21.8 (±0.35)	21.8 (±0.2)
Lutein	10	30.2 (±1.2)	13.1 (±5.0)	20.6 (±0.1)
Zeaxanthin	0.5	31.8 (±0.01)	21.7 (±1.0)	21.8 (±0.1)
Zeaxanthin	10	29.3 (±1.3)	13.7 (±4.3)	20.8 (±0.3)