Biological and chemical insight into *Gaultheria procumbens* fruits: A rich source of anti-inflammatory and antioxidant salicylate glycosides and procyanidins for food and functional application

Piotr Michel,^a* Sebastian Granica,^b Karolina Rosińska,^a Jarosław Rojek,^a Łukasz Poraj,^a Monika Anna Olszewska^a

- ^a Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1 St., 90-151 Lodz, Poland
- ^b Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Warsaw Medical University, 1 Banacha St., Warsaw 02-097, Poland
- * Corresponding author. *E-mail address*: piotr.michel@umed.lodz.pl

Supplementary Materials

Table of contents

Table S1 Phenolic analytes detected in G. procumbens fruit dry extracts by UHPLC-PDA-ESI-MS³

Table S2 NMR spectral data of PH, GT and TG in methanol-d₄ (600 MHz for ¹H and 150.9 MHz for ¹³C)

- **Table S3** Correlation (r) coefficients and probability (p) values of linear relationships between antioxidant and anti-inflammatory activity parameters and phenolic contents of G. procumbens fruit dry extracts
- Table S4 Extraction yield and phenolic contents including the levels of individual methyl salicylate glycosides (GT, PH and TG) inG. procumbens fruits extracted with different solvents
- Fig. S1 UHPLC-PDA chromatogram of *n*-butanol extract of *G. procumbens* fruits (BE) at 280 nm.
- Fig. S2 Effect of acetone fruit extract (AE) at 25, 50, 100, 150 μg/mL and the isolated salicylates (PH, GT and TG) at 25, 50, and 75 μM on viability (membrane integrity) of neutrophils as indicated by propidium iodide positive PI(+) cells.
- Fig. S3 Effect of the isolated salicylates (TG, GT and PH) and positive controls (QU and DEX) at 25, 50, and 75 μM on: (A) ROS production, and secretion of (B) TNF-α, (C) IL-1β, (D) IL-8, (E) MMP-9, and (F) ELA-2 by stimulated human neutrophils.

Peak	Analytes	Rt [min]	UV [nm]	[M–H]⁻ <i>m/z</i>	MS ² (% relative abundance) MS ³ (% relative abundance)		Extract
1	unknown compound	3.1	285	465	447 (7); 367 (100) 349 (29); 187 (71); 179 (90); 143 (32); 113 (21)		All
2	protocatechuic acid *	4.2	259, 293	153			All
3	vanilic acid derivative	5.3	260, 310	331	313 (100) ; 211 (2); 167 (33); 125 (7)	297 (16), 153 (100)	ME, WE
4	3- <i>O</i> -caffeoylquinic acid (neochlorogenic acid) *	6.0	325	353	191 (100); 179 (29)		All
5	<i>p</i> -hydroxybenzoic acid *	7.0	254	137	93 (100)		All
6	unknown compound	8.8	280	293	273 (3); 195 (9); 131 (100)		All
7	procyanidin B-type dimer	10.1	280	577	425 (100) ; 407 (64); 289 (20)	407 (100); 273 (10)	AE, ME, WE
8	procyanidin B-type dimer	10.5	280	577	425 (100) ; 407 (63); 289 (20)	407 (100); 273 (9)	All
9	5- <i>O</i> -caffeoylquinic acid (chlorogenic acid) *	10.9	325	353	191 (100); 179 (6)		All
10	(+)-catechin *	11.1	280	289	245 (100); 205 (27)		All
11	methyl salicylate 2- <i>O</i> -(2'- <i>O</i> -β-D- glucopyranosyl)-β-D-glucopyranoside (physanguloside A, PH) *	11.3	285	521 ª	475 (100); 443 (4)		All
12	sinapic acid hexoside derivative	12.1	280	431	413 (5); 385 (100); 223 (13)		All
13	caffeic acid derivative	12.4	325	327	309 (6); 179 (49); 147 (100); 119 (16)		All
14	methyl salicylate 2- <i>O</i> -(2'- <i>O</i> -β-D- glucopyranosyl-6'- <i>O</i> -β-D- xylopyranosyl)-β-D-glucopyranoside (MSTG-B, TG) *	13.0	285	653 °	607 (100); 575 (13)		All
15	procyanidin B-type trimer	13.6	280	865	847 (31); 739 (43); 713 (34) ; 695 (79); 577 (47); 451 (20); 287 (20)	695 (100); 575 (5); 561 (23); 407 (36); 243 (11)	AE, ME, WE
16	procyanidin B-type dimer	14.1	280	577	425 (100) ; 407 (64); 289 (22)	407 (100); 273 (8)	All
17	procyanidin B-type dimer	14.6	280	577	425 (100) ; 407 (59); 289 (18)	407 (100); 273 (10)	ME, WE
18	procyanidin B-2 (PB2) *	15.3	280	577	425 (100) ; 407 (41); 289 (14) 407 (100); 273 (7)		AE, ME, WE
19	unknown compound	15.7	280	461	415 (100) 407 (100); 381 (4); 273 (7)		AE, ME, BE, WE
20	protocatechuic acid derivative	16.1	259, 293	481	463 (17); 345 (39); 327 (100); 165 (18); 153 (56)		All
21	(-)-epicatechin *	16.8	280	289	245 (100); 205 (16)		AE, ME, EAE, WE
22	gaultherin (GT) *	17.7	285	491 ª	445 (12); 413 (4); 293 (100); 233 (2); 149 (4)		All
23	unknown compound	17.9	280	367	245 (12); 203 (61); 185 (100); 141 (26)		ME, WE

Table S1 Phenolic analytes detected in G. procumbens fruit dry extracts by UHPLC-PDA-ESI-MS³

Table S1	(Contd.)
----------	----------

Peak	Analytes	Rt [min]	UV [nm]	[M–H]⁻ <i>m/z</i>	MS ² (% relative abundance)	MS ³ (% relative abundance)	Extract
24	procyanidin A-type trimer	18.3	280	863	711 (100) ; 573 (21); 559 (21); 451 (25); 411 (31); 289 (10)	693 (78); 559 (21); 541 (26); 407 (14)	AE, ME, WE
25	procyanidin B-type dimer	18.7	280	577	425 (100) ; 407 (20); 289 (49)	407 (100); 273 (11)	AE, ME, WE
26	procyanidin A-type trimer	20.3	280	863	711 (100) ; 693 (8); 573 (27); 559 (22); 451 (43); 411 (34); 289 (22)	693 (100); 559 (82); 541 (24); 463 (13); 407 (18); 285 (3)	AE, ME, WE
27	procyanidin B-type trimer	20.7	280	865	847 (14); 739 (18); 713 (100) ; 695 (32); 577 (29); 451 (27); 287 (17)	695 (100); 575 (22); 561 (22); 407 (20); 243 (10)	AE, ME, WE
28	procyanidin C1 *	21.3	280	865	847 (16); 739 (56); 713 (100) ; 695 (49); 577 (61); 451 (36); 287 (35)	695 (100); 575 (23); 561 (19); 407 (35); 243 (7)	AE, ME, WE
29	procyanidin B-type dimer	22.1	280	577	425 (100) ; 407 (62); 289 (19)	407 (100); 273 (12)	AE, ME, WE
30	procyanidin A-type dimer	22.6	280	575	499 (98); 491 (54); 451 (14); 425 (100); 407 (79); 289 (22)	407 (100); 273 (9)	All
31	procyanidin B-type trimer	23.6	280	865	847 (6); 739 (36); 713 (51) ; 695 (92); 577 (99); 451 (30); 287 (54)	695 (100); 575 (24); 561 (26); 407 (25); 243 (10)	AE, ME, WE
32	procyanidin A-type dimer	24.2	280	575	499 (27); 449 (89); 423 (41) ; 289 (79)	405 (17); 285 (100)	ME, WE
33	procyanidin A-type dimer	24.8	280	575	499 (25); 449 (49); 423 (100) ; 289 (20)	405 (11); 285 (100)	WE
34	procyanidin A-type trimer	25.7	280	863	711 (100) ; 693 (20); 573 (24); 559 (23); 451 (32); 411 (42); 289 (12)	693 (96); 559 (100); 541 (64); 463 (5); 407 (15); 285 (2)	All
35	quercetin 3- <i>O</i> -β-D-galactopyranoside (hyperoside) *	27.6	254, 353	463	301 (100)	273 (38); 255 (20); 179 (100); 151 (64)	All
36	quercetin 3- <i>O</i> -β-D-glucopyranoside (isoquercitrin) *	28.6	256, 353	463	301 (100)	273 (54); 255 (22); 179 (100); 151 (76)	ME, WE
37	quercetin 3- <i>O</i> -β-D-glucuronopyrano- side (miquelianin) *	29.1	256, 356	477	301 (100)	273 (29); 257 (19); 179 (100); 151 (58)	AE, ME, WE
38	procyanidin A-type dimer	29.5	280	575	449 (56); 423 (100) ; 289 (19)	405 (8); 285 (100); 257 (5)	AE, ME, WE
39	quercetin hexoside-rhamnoside	31.8	256, 355	609	447 (100) ; 301 (26)	301 (100)	WE
40	quercetin 3- <i>O</i> -α-L-rhamnopyranoside (quercitrin) *	32.9	276, 350	447	301 (100)	273 (19); 257 (23); 179 (100); 151 (59)	WE
41	kaempferol 3- <i>Ο</i> -β- _D - glucuronopyranoside *	33.3	265, 345	461	285 (100)	267 (32); 257 (100); 241 (23); 229 (30); 151 (16)	ME, WE
42	unknown compound	40.3	325	663	517 (5); 487 (100) ; 469 (14)	341 (8); 307 (100); 235 (57); 205 (15); 163 (74)	ME, WE
43	unknown compound	41.5	325	693	517 (100) ; 499 (63); 337 (12); 265 (4)	337 (90); 295 (9); 265 (36); 235 (52); 193 (100); 175 (58)	AE, ME, BE, WE
44	quercetin *	43.7	255, 364	301	273 (36); 255 (21); 179 (100); 151 (69)		All
45	kaempferol *	50.4	265, 364	285	267 (90); 257 (11); 241 (20); 229 (80); 151 (18)		All

Rt, retention times. UV λ_{max} , absorbance maxima in PDA spectra. [M–H]⁻, pseudomolecular ions in MS spectra recorded in a negative ion mode. The bolded ions were subjected to MS³ fragmentation. Compounds marked with an asterisk (*) were identified with authentic standards; a [M+HCOO]⁻.

Table S2 NMR spectral data of PH, GT and TG in methanol-d₄ (600 MHz for ¹H and 150.9 MHz for ¹³C) ^a

Dec. h	РН		GT		TG	
POS. 3	δ _н	δc	δ _н	δc	δн	δc
1		120.1		121.0		120.0
2		156.2		157.2		156.1
3	7.28 (1H, dd , J_1 =0.8, J_2 =8.7)	114.9	7.47 (1H, dd , J_1 =1.1, J_2 =7.9)	117.8	7.34 (1H, dd , J_1 =1.5, J_2 =8.7)	115.3
4	7.54 (1H, ddd, J₁=1.5, J₂=7.2, J₃=8.7)	133.4	7.59 (1H, ddd, J₁=1.9, J₂=7.9, J₃=7.9)	133.9	7.57 (1H, ddd, J₁=1.9, J₂=7.5, J₃=8.7)	133.7
5	7.09 (1H, <i>ddd</i> , J₁=0.8, J₂=7.2, J₃=7.9)	121.1	7.15 (1H, ddd, J₁=1.1, J₂=7.9, J₃=7.9)	122.3	7.09 (1H, ddd, J₁=1.5, J₂=7.5, J₃=8.7)	121.2
6 7	7.79 (1H, dd, J ₁ =1.5, J ₂ =7.9)	130.9 166.6	7.79 (1H, dd, J ₁ =1.9, J ₂ =7.9)	130.6 167.2	7.79 (1H, dd, J ₁ =1.9, J ₂ =7.5)	130.9 166.5
8	3.90 (3H <i>, s</i>)	51.2	3.92 (3H, <i>s</i>)	51.4	3.90 (3H <i>, s</i>)	51.2
	2-β-D-glucopyranosyl:		2-β-D-glucopyranosyl:		2-β-d-glucopyranosyl:	
1'	5.36 (1H, d, J=7.5)	98.3	4.90 (1H, <i>d</i> , <i>J</i> =7.5)	102.5	5.33 (1H, <i>d</i> , <i>J</i> =7.5)	98.3
2'	3.82 (1H, dd, J ₁ =7.5, J ₂ =9.0)	81.6	3.56 (1H, dd, J ₁ =7.5, J ₂ =9.0)	73.6	3.83 (1H, dd, J ₁ =7.5, J ₂ =9.0)	81.6
3'	3.71 (1H, dd, J ₁ =9.0, J ₂ =9.8)	76.3	3.50 (1H, dd, J ₁ =9.0, J ₂ =9.8)	76.2	3.70 (1H, dd, J ₁ =9.0, J ₂ =9.8)	76.2
4'	3.54 (1H, dd, J1=9.0, J2=9.8)	69.5	3.43 (1H, dd, J ₁ =9.8, J ₂ =9.8)	69.9	3.86 (1H, dd, J ₁ =9.0, J ₂ =9.8)	69.6
5'	3.52 (1H, <i>ddd</i> , J₁=1.5, J₂=6.4, J₃=9.0)	76.5	3.69 (1H, <i>ddd</i> , J₂=1.9, J₂=6.4, J₃=9.8)	76.1	3.49 (1H, <i>ddd</i> , J₁=1.5, J₂=6.4, J₃=9.0)	75.8
6'	3.88 (1H, dd, J_1 =1.5, J_2 =11.7, H-6' _a) 3.73 (1H, dd, J_1 =6.4,	61.0	4.16 (1H, dd, J_1 =1.9, J_2 =11.7, H-6'a) 3.81 (1H, dd, J_2 =6.4,	68.5	4.12 (1H, dd , $J_1=1.5$, $J_2=11.7$, H-6 ⁺ a) 3.81 (1H, dd , $J_1=6.4$,	68.3
	J ₂ =11.7, H-6 [°] b)		J ₂ =11.7, H-6 [°] _b)		J ₂ =11.7, H-6 [°] _b)	
	2'-β-D-glucopyranosyl:		6'-β-D-xylopyranosyl:		6'-β-D-xylopyranosyl:	
1"	4.84 (1H, d, J=7.5)	103.0	4.36 (1H, d, J=7.5)	104.1	4.31 (1H, <i>d</i> , <i>J</i> =7.5)	103.9
2"	3.25 (1H, dd, J ₁ =7.5, J ₂ =9.4)	74.7	3.24 (1H, dd, J ₁ =7.5, J ₂ =9.0)	73.6	3.21 (1H, dd, J ₁ =7.5, J ₂ =9.0)	73.6
3"	3.41 (1H, dd, J ₁ =9.0, J ₂ =9.4)	76.3	3.31 (1H, dd, J ₁ =9.0, J ₂ =9.8)	76.3	3.28 (1H, dd, J ₁ =8.7, J ₂ =9.0)	76.2
4"	3.40 (1H, dd, J ₁ =8.3, J ₂ =9.0)	69.4	3.52 (1H, <i>ddd</i> , J₁=5.3, J₂=9.8, J₃=10.2)	69.8	3.48 (1H, <i>ddd</i> , J₁=5.3, J₂=9.0, J₃=10.5)	69.8
5"	3.17 (1H, <i>ddd</i> , J₁=2.3, J₂=6.4, J₃=8.3) 3.57 (1H, <i>dd</i> , J₁=2.3,	76.0	3.18 (1H, <i>dd</i> , J₁=10.2, J₂=11.7, H-5" _a) 3.87 (1H, <i>dd</i> , J₁=5.3,	65.5	3.11 (1H, <i>dd</i> , J ₁ =10.5, J ₂ =11.3, H-5" _a) 3.82 (1H, <i>dd</i> , J ₁ =5.3,	65.5
6"	J ₂ =11.7, H-6" _a) 3.22 (1H, <i>dd</i> , J ₁ =6.4, J ₂ =11.7, H-6" _b)	60.3	J2=11.7, H-5"e)		J ₂ =11.3, H-5" _e)	
					2'-β-d-glucopyranosyl:	
1‴					4.85 (1H <i>, d, J</i> =7.5)	103.0
2‴					3.25 (1H, dd, J ₁ =7.5, J ₂ =7.9)	74.7
3‴					$3.42 (1H, dd, J_1=7.9, J_2=9.0)$	76.0
4‴					$3.40 (1H, dd, J_1=9.0, J_2=9.0)$	69.4
5‴					3.17 (1H, <i>ddd</i> , J₁=1.1, J₂=6.4, J₃=9.0)	76.1
6‴					3.52 (1H, dd , $J_1=1.1$, $J_2=12.1$, H-6 ^{(''} ₀) 3.23 (1H, dd , $J_1=6.4$, $J_2=12.1$, H-6 ^{(''} _b)	60.2

^a Data acquired with TMS as the internal standard, δ in ppm. Multiplicities and coupling constants (in Hz) are given in parentheses. Assignments confirmed by ¹H-¹H COSY, HMQC, and HMBC experiments. ^b For trivial atom numbering see chemical formulas of **PH**, **GT** and **TG** (Fig. 2 of the main paper).

Table S3 Correlation (*r*) coefficients and probability (*p*) values of linear relationships between antioxidant and anti-inflammatory activity parameters and phenolic contents of *G. procumbens* fruit dry extracts

r (n) for	Antioxidant activity							Anti-inflammatory activity		
r (p) 101:	DPPH	FRAP	TBARS	O ₂ •-	•он	H ₂ O ₂	COX-2	HYAL	LOX	
TPC	-0.8696 (0.130)	0.7930 (0.207)	-0.8114 (0.189)	-0.7378 (0.262)	0.1976 (0.802)	-0.5858 (0.414)	-0.1391 (0.861)	-0.8119 (0.188)	-0.5837 (0.416)	
TPH	-0.3849 (0.615)	0.8807 (0.119)	-0.3807 (0.619)	-0.4155 (0.585)	-0.4449 (0.555)	-0.8594 (0.141)	-0.8253 (0.175)	-0.6946 (0.305)	-0.9331 (0.067)	
TPA	-0.9042 (0.096)	0.8115 (0.188)	-0.8532 (0.147)	-0.7878 (0.212)	0.2405 (0.759)	-0.6345 (0.365)	-0.1221 (0.878)	-0.8516 (0.148)	-0.6229 (0.377)	
TLPA	-0.7617 (0.238)	0.9939 (0.006) **	-0.7469 (0.253)	-0.7506 (0.249)	-0.0756 (0.924)	-0.9469 (0.053)	-0.5443 (0.456)	-0.9376 (0.062)	-0.9693 (0.031) *	
TPHA	0.1530 (0.847)	0.2445 (0.756)	0.0826 (0.917)	-0.0342 (0.917)	-0.3246 (0.675)	-0.5059 (0.494)	-0.5123 (0.488)	-0.1682 (0.832)	-0.5275 (0.473)	
TSAL	-0.3367 (0.663)	0.8553 (0.145)	-0.3338 (0.666)	-0.3717 (0.628)	-0.4801 (0.520)	-0.8374 (0.163)	-0.8452 (0.155)	-0.6572 (0.343)	-0.9158 (0.084)	
TFL	-0.2752 (0.725)	0.6931 (0.307)	-0.1843 (0.816)	-0.1050 (0.895)	-0.5773 (0.423)	-0.3318 (0.668)	-0.7156 (0.284)	-0.3981 (0.602)	-0.4606 (0.539)	

TPC: total phenolic content (Folin-Ciocalteau assay) in gallic acid equivalents, TPH: total phenolic content (HPLC), TSAL: total salicylates (HPLC), TPA: total proanthocyanidins (*n*-butanol/HCl assay) in cyanidin chloride equivalents, TLPA: total proanthocyanidins (HPLC), TPHA: total phenolic acids (HPLC), TFL: total flavonoids (HPLC). Asterisks mean significance of the estimated linear relationship (*p < 0.05, ** p < 0.01) for four extracts (n = 4).

 Table S4 Extraction yield and phenolic contents including the levels of individual methyl salicylate glycosides (GT, PH and TG) in G. procumbens fruits extracted with different solvents

Extraction solvent			
methanol-water (7:3, v/v)	water		
43.69 ± 2.47	48.09 ± 2.60		
7.66 ± 0.12 *	4.93 ± 0.04 *		
36.40 ± 0.53 *	23.43 ± 0.71 *		
28.49 ± 0.47 *	15.09 ± 0.16 *		
38.21 ± 0.40 *	15.63 ± 0.30 *		
9.87 ± 0.10 *	3.57 ± 0.07 *		
22.33 ± 0.69 *	1.37 ± 0.02 *		
5.69 ± 0.19 *	3.91 ± 0.06 *		
10.19 ± 0.32	10.35 ± 0.37		
	Extraction solvent methanol-water (7:3, v/v) 43.69 ± 2.47 7.66 ± 0.12 * 36.40 ± 0.53 * 28.49 ± 0.47 * 38.21 ± 0.40 * 9.87 ± 0.10 * 22.33 ± 0.69 * 5.69 ± 0.19 * 10.19 ± 0.32		

Results are presented as means \pm SD (n = 3) and calculated per: ^a fresh fruit weight (mg/g fw); ^b dry fruit weight (mg/g dw). Means in the same row marked with asterisks differ significantly (p < 0.05). TPC: total phenolic content (Folin-Ciocalteau assay) in gallic acid equivalents, TSAL: total salicylates (HPLC), TSA: total salicylates in equivalents of salicylic acid, TPA: total proanthocyanidins (n-butanol/HCl assay) in cyanidin chloride equivalents.

Fig. S1 UHPLC-PDA chromatogram of *n*-butanol extract of *G. procumbens* fruits (BE) at 280 nm. The peak numbers refer to those implemented in Table S1. The following compounds were isolated: PH (peak 11), TG (peak 14) and GT (peak 22).

Fig. S2 Effect of acetone fruit extract (**AE**) at 25, 50, 100, 150 µg/mL and the isolated salicylates (**PH**, **GT** and **TG**) at 25, 50, and 75 µM on viability (membrane integrity) of neutrophils as indicated by propidium iodide positive PI(+) cells. Data expressed as means \pm SD of three independent experiments performed with cells isolated from five independent donors. Statistical significance: #p < 0.05 compared to the non-stimulated control.

LPS Control TG 25 TG 50 TG 75 GT 25 GT 50 GT 75 PH 25 PH 50 PH 75 PB2 25 PB2 50 PB2 75 DEX 25 DEX 50 DEX 75

Fig. S3 Effect of the isolated salicylates (**TG**, **GT** and **PH**) and positive controls (**QU** and **DEX**) at 25, 50, and 75 μ M on: (A) ROS production, and secretion of (B) TNF- α , (C) IL-1 β , (D) IL-8, (E) MMP-9, and (F) ELA-2 by stimulated human neutrophils. Data expressed as means ± SD of three independent experiments performed with cells isolated from five independent.