Ammonium hydroxide as ultimate amino source for synthesis of N-

unprotected 3-tetrasubstituted aminooxindoles via catalyst-free

direct amination

Jing Yue, ^{a,b,d} Xi-Tao Ma,^{c,d} Xiong-Li Liu,^{*a,b} Jun-Xin Wang,^b Xiong-Wei Liu^a and Ying Zhou^{*a}

^a School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, P. R. China.

^b Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, P. R. China.

^c Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.

R. China.

^{*d*} *These two authors contributed equally to this work.*

E-mail: <u>xlliu1@gzu.edu.cn</u> (X.-L. Liu) and <u>zhouying067@gzy.edu.cn</u> (Y. Zhou)

Table of Contents

Table of contents	S1
1. General experimental information	S2
2. Typical experimental procedures for synthesis of compounds 2	S2
3. Characterization data of compounds 2	S2
4. Gram scale synthesis of the product 2a	S11
5. Bromooxindole 1a' as a test substrate	S11
6. Figure S1: new species detected by ESI-MS analysis	S12
7. X-ray crystal data for compounds 2d and 2g	S13
8. The copies of ¹ H NMR and ¹³ C NMR spectra for compounds 2	S15

1. General information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. ¹H and ¹³CNMR spectra were obtained using a Bruker DPX-400 or DPX-600 spectrometer. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Melting points were measured on an electrothermal digital melting point apparatus.

2. Typical experimental procedures for synthesis of compounds 2

In a sealed tube equipped with a magnetic stirring bar, to 2.0 mL of $NH_3 \cdot H_2O$ (25%) was added **1** (0.20 mmol). The reaction mixture was stirred at rt for 3 h. After completion of the reaction, as indicated by TLC, purification by flash column chromatography (hexane/EtOAc, 6/1, v/v) was carried out to furnish the corresponding product **2**.

3. Characterization data of compounds 2

2a: Light yellow solid, m.p. 169.8-175.0 °C; yield 85%; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.20 (br s, 2H), 2.93 (d, J = 13.2 Hz, 1H), 3.03 (d, J = 13.2 Hz, 1H), 6.58 (d, J = 7.6 Hz, 1H), 6.81-6.83 (m, 2H), 6.90-6.94 (m, 1H), 7.04-7.09 (m, 4H), 7.24 (d, J = 7.2 Hz, 1H), 10.00 (br s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 45.3, 62.9, 109.5, 121.5, 124.5, 126.6, 127.8, 128.6, 130.3, 132.6, 136.2, 142.0, 181.3; HRMS (ESI-TOF) m/z: Calcd. for C₁₅H₁₅N₂O [M+H]⁺: 239.1179; Found: 239.1184.

2b: Light yellow solid, m.p. 160.0-163.7 °C; yield 87%; ¹H NMR (DMSO- d_6 , 600 MHz) δ : 2.16 (s, 3H), 2.26 (br s, 1H), 2.90 (d, J = 12.6 Hz, 1H), 3.00 (d, J = 13.2 Hz, 1H), 6.60 (d, J = 8.4 Hz, 1H), 6.72 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 6.92-6.95 (m, 1H), 7.08-7.10 (m, 1H), 7.27 (d, J = 7.8 Hz, 1H), 9.98 (br s, 1H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 21.0, 45.0, 63.0, 109.6, 121.6, 124.7, 128.5, 128.7, 130.2, 132.8, 133.1, 135.5, 142.2, 181.4; HRMS (ESI-TOF) m/z: Calcd. for C₁₆H₁₇N₂O [M+H]⁺: 253.1335; Found: 253.1341.

2c: Light yellow solid, m.p. 61.8-63.0 °C; yield 91%; ¹H NMR (DMSO-*d*₆, 600 MHz) δ: 1.18 (s, 9H), 2.19 (br s, 1H), 2.90 (d, *J* = 13.2 Hz, 1H), 3.01 (d, *J* = 12.6 Hz, 1H), 6.63 (d, *J* = 7.8 Hz, 1H), 6.78 (d, *J* = 8.4 Hz, 2H), 6.93-6.96 (m, 1H), 7.08-7.12 (m, 3H), 7.26 (d, *J* = 7.8 Hz, 1H), 10.03 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 150 MHz) δ: 31.6, 34.5, 44.8, 62.7, 109.6, 121.6, 124.6, 124.7, 128.7, 130.1, 132.9, 133.2, 142.2, 148.8, 181.4; HRMS (ESI-TOF) m/z: Calcd. for C₁₉H₂₃N₂O [M+H]⁺: 295.1805; Found: 295.1803.

2d: Light yellow solid, m.p. 123.5-125.7 °C; yield 85%; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.27 (br s, 1H), 2.91 (d, J = 13.2 Hz, 1H), 3.02 (d, J = 13.2 Hz, 1H), 6.01 (d, J = 7.6 Hz, 1H), 6.83 (d, J = 8.4 Hz, 2H), 6.91-6.95 (m, 1H), 7.07-7.12 (m, 3H), 7.23 (d, J = 7.2 Hz, 1H), 10.05 (br s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 44.0, 62.4, 109.2, 121.3, 124.3, 127.4, 128.4, 131.0, 131.7, 131.9, 134.8, 141.6, 180.8; HRMS (ESI-TOF) m/z: Calcd. for C₁₅H₁₄ClN₂O [M+H]⁺: 273.0789;

2e: Light yellow solid, m.p. 136.7-139.5 °C; yield 82%; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.24 (br s, 2H), 2.98 (d, J = 13.2 Hz, 1H), 3.18 (d, J = 13.2 Hz, 1H), 6.69 (d, J = 7.2 Hz, 1H), 6.82-6.86 (m, 1H), 6.95 (d, J = 7.2 Hz, 1H), 7.09-7.13 (m, 1H), 7.27 (s, 2H), 7.38 (s, 1H), 10.25 (br s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 61.8, 109.2, 121.1, 124.6, 126.5, 128.2, 128.5, 131.6, 131.8, 132.9, 133.3, 135.0, 141.3, 181.1; HRMS (ESI-TOF) m/z: Calcd. for C₁₅H₁₃Cl₂N₂O [M+H]⁺: 307.0399; Found: 307.0403.

2f: Light yellow solid, m.p. 207.6-207.9 °C; yield 80%; ¹H NMR (DMSO- d_6 , 600 MHz) δ : 2.29 (br s, 2H), 2.95 (d, J = 12.6 Hz, 1H), 3.05 (d, J = 12.6 Hz, 1H), 6.60 (s, 1H), 6.85-6.86 (m, 2H), 6.97-6.98 (m, 1H), 7.08-7.09 (m, 3H), 7.25 (d, J = 7.8 Hz, 1H), 10.16 (br s, 1H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 45.1, 62.8, 109.6, 121.3, 126.3, 126.8, 128.0, 130.3, 131.7, 132.8, 136.0, 143.6, 181.3; HRMS (ESI-TOF) m/z: Calcd. for C₁₅H₁₄ClN₂O [M+H]⁺: 273.0789; Found: 273.0784.

2g: Light yellow solid, m.p. 143.6-147.9 °C; yield 83%; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.15 (s, 3H), 2.30 (br s, 1H), 2.89 (d, J = 12.8 Hz, 1H), 2.98 (d, J = 12.8 Hz, 1H), 6.59 (s, 1H), 6.70 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 7.6 Hz, 2H), 6.95-6.98 (m, 1H), 7.25 (d, J = 7.6 Hz, 1H), 10.14 (br s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 20.6, 44.2, 62.4, 109.1, 120.8, 125.8, 128.2, 129.7, 131.3, 132.3, 132.4, 135.3, 143.2, 180.9; HRMS (ESI-TOF) m/z: Calcd. for C₁₆H₁₆ClN₂O [M+H]⁺:

2h: Light yellow solid, m.p. 167.0-171.5 °C; yield 81%; ¹H NMR (DMSO- d_6 , 600 MHz) δ : 2.90 (d, J = 12.6 Hz, 1H), 3.00 (d, J = 12.6 Hz, 1H), 3.49 (s, 3H), 3.63 (s, 3H), 6.35 (s, 1H), 6.42 (d, J = 7.8 Hz, 1H), 6.57-6.59 (m, 1H), 6.67 (d, J = 8.4 Hz, 1H), 6.92-6.95 (m, 1H), 7.19-7.21 (m, 1H), 10.01 (br s, 1H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 45.0, 55.4, 55.7, 63.7, 110.2, 111.3, 112.5 (d, $J_{CF} = 25.4$ Hz), 113.9, 114.7 (d, $J_{CF} = 25.3$ Hz), 122.4, 128.2, 135.0, 138.4, 147.7, 148.0, 158.8 (d, $J_{CF} = 234.6$ Hz), 181.4; HRMS (ESI-TOF) m/z: Calcd. for C₁₇H₁₈FN₂O₃ [M+H]⁺: 317.1296; Found: 317.1296.

2i: Light yellow solid, m.p. 237.6-239.7 °C; yield 80%; ¹H NMR (DMSO- d_6 , 600 MHz) δ : 2.34 (br s, 2H), 2.92 (d, J = 12.6 Hz, 1H), 3.04 (d, J = 12.6 Hz, 1H), 6.63 (s, 1H), 6.87 (d, J = 8.4 Hz, 2H), 6.98-6.99 (m, 1H), 7.16-7.23 (m, 3H), 10.19 (br s, 1H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 44.1, 62.7, 109.7, 121.4, 126.3, 128.0, 131.4, 131.6, 132.2, 133.0, 135.0, 143.6, 181.2; HRMS (ESI-TOF) m/z: Calcd. for C₁₅H₁₃Cl₂N₂O [M+H]⁺: 307.0399; Found: 307.0394.

2j: White solid, m.p. 188.5-189.7 °C; yield 86%; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.33 (br s, 2H), 2.92 (d, J = 12.4 Hz, 1H), 3.05 (d, J = 12.4 Hz, 1H), 6.57-6.60 (m, 1H), 6.84 (d, J = 7.6 Hz, 1H), 6.90-6.95 (m, 1H), 7.02-7.05 (m, 2H), 7.10-7.13 (m, 1H), 7.27 (d, J = 8.0 Hz, 1H), 10.12 (br s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 44.0, 63.0, 109.9 (d, $J_{CF} = 3.2$ Hz), 112.1(d, $J_{CF} = 24.2$ Hz), 114.5 (d, $J_{CF} = 23.2$ Hz), 120.7, 129.0, 129.3, 129.6, 132.6, 133.8, 137.7, 138.4, 157.8 (d, $J_{CF} = 24.2$ Hz), 114.5 (d, $J_{CF} = 23.2$ Hz), 120.7, 129.0, 129.3, 129.6, 132.6, 133.8, 137.7, 138.4, 157.8 (d, $J_{CF} = 24.2$ Hz), 114.5 (d, $J_{CF} = 23.2$ Hz), 120.7, 129.0, 129.3, 129.6, 132.6, 133.8, 137.7, 138.4, 157.8 (d, $J_{CF} = 24.2$ Hz), 114.5 (d, $J_{CF} = 23.2$ Hz), 120.7, 129.0, 129.3, 129.6, 132.6, 133.8, 137.7, 138.4, 157.8 (d, $J_{CF} = 24.2$ Hz), 114.5 (d, $J_{CF} = 23.2$ Hz), 120.7, 129.0, 129.3, 129.6, 132.6, 133.8, 137.7, 138.4, 157.8 (d, $J_{CF} = 24.2$ Hz), 114.5 (d, $J_{CF} = 23.2$ Hz), 120.7, 129.0, 129.3, 129.6, 132.6, 133.8, 137.7, 138.4, 157.8 (d, $J_{CF} = 24.2$ Hz), 114.5 (d, $J_{CF} = 23.2$ Hz), 120.7, 129.0, 129.3, 129.6, 132.6, 133.8, 137.7, 138.4, 157.8 (d, $J_{CF} = 24.2$ Hz), 114.5 (d, $J_{CF} = 23.2$ Hz), 120.7, 129.0, 129.3, 129.6, 132.6, 133.8, 137.7, 138.4, 157.8 (d, $J_{CF} = 24.2$ Hz), 120.7, 129.0, 129.3, 129.6, 132.6, 133.8, 137.7, 138.4, 157.8 (d, $J_{CF} = 24.2$ Hz), 120.7, 129.0, 129.3, 129.6, 132.6, 133.8, 137.7, 138.4, 157.8 (d, J_{CF} = 24.2

= 236.4 Hz), 180.6; HRMS (ESI-TOF) m/z: Calcd. for C₁₅H₁₃BrFN₂O [M+H]⁺: 335.0190; Found: 335.0193.

2k: Light yellow solid, m.p. 189.7-190.6 °C; yield 83%; ¹H NMR (DMSO- d_6 , 600 MHz) δ : 1.27 (s, 3H), 6.83 (d, J = 8.4 Hz, 1H), 6.94-6.96 (m, 1H), 7.15-7.18 (m, 1H), 7.30 (d, J = 7.8 Hz, 1H), 10.23 (br s, 1H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 26.2, 58.1, 109.9, 121.9, 123.8, 128.6, 135.4, 141.5, 182.7; HRMS (ESI-TOF) m/z: Calcd. for C₉H₁₁N₂O [M+H]⁺: 163.0866; Found: 163.0868.

21: Light yellow solid, m.p. 156.9-158.1 °C; yield 81%; ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 2.70 (br s, 2H), 3.18 (d, *J* = 14.0 Hz, 1H), 3.24 (d, *J* = 14.0 Hz, 1H), 6.51 (d, *J* = 3.2 Hz, 1H), 6.67 (d, *J* = 7.6 Hz, 1H), 6.74-6.78 (m, 1H), 6.92-6.96 (m, 1H), 7.12-7.15 (m, 2H), 7.24 (d, *J* = 7.2 Hz, 1H), 10.12 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 62.1, 109.3, 121.3, 124.2, 124.7, 126.1, 126.7, 128.6, 132.1, 137.5, 142.1, 180.7; HRMS (ESI-TOF) m/z: Calcd. for C₁₃H₁₃N₂OS [M+H]⁺: 245.0743; Found: 245.0746.

2m: Light yellow solid, m.p. 168.5-170.0 °C; yield 77%; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.25 (br s, 2H), 2.87-2.95 (m, 2H), 3.45 (s, 3H), 6.85 (d, J = 7.6 Hz, 1H), 6.95-6.99 (m, 1H), 7.20-7.24 (m, 1H), 7.33 (d, J = 7.2 Hz, 1H), 10.32 (br s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 42.7, 51.6, 58.8, 109.8, 121.7, 124.1, 129.0, 132.9, 142.7, 170.2, 180.6; HRMS (ESI-TOF) m/z: Calcd. for C₁₁H₁₃N₂O₃ [M+H]⁺: 221.0921; Found: 221.0917.

2n: Light yellow solid, m.p. 196.5-198.0 °C; yield 86%; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 1.12 (s, 9H), 2.20 (br s, 2H), 2.72 (d, J = 14.4 Hz, 1H), 2.86 (d, J = 14.8 Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 6.96-7.00 (m, 1H), 7.21-7.25 (m, 1H), 7.32 (d, J = 7.2 Hz, 1H), 10.31 (br s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 27.6, 44.8, 59.1, 80.3, 109.8, 121.6, 124.2, 128.9, 132.7, 142.9, 168.6, 180.7; HRMS (ESI-TOF) m/z: Calcd. for C₁₄H₁₉N₂O₃ [M+H]⁺: 263.1390; Found: 263.1397.

2o: Light yellow solid, m.p. 180.5-181.0 °C; yield 88%; ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 1.08 (s, 9H), 2.11 (br s, 2H), 2.24 (s, 3H), 2.63 (d, *J* = 14.4 Hz, 1H), 2.77 (d, *J* = 14.4 Hz, 1H), 6.68 (d, *J* = 7.6 Hz, 1H), 6.97-6.99 (m, 1H), 7.10 (s, 1H), 10.14 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 21.2, 27.6, 44.8, 59.2, 80.2, 109.5, 124.9, 129.0, 130.3, 132.8, 140.4, 168.7, 180.6; HRMS (ESI-TOF) m/z: Calcd. for C₁₅H₂₁N₂O₃ [M+H]⁺: 277.1547; Found: 277.1541.

2p: Light yellow solid, m.p. 198.3-199.9 °C; yield 84%; ¹H NMR (DMSO- d_6 , 600 MHz) δ : 2.65 (br s, 2H), 6.92-6.96 (m, 2H), 7.12 (d, J = 7.8 Hz, 1H), 7.20-7.25 (m, 2H), 7.29-7.31 (m, 2H), 7.37 (d, J = 7.8 Hz, 2H), 10.47 (br s, 1H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 64.6, 110.2, 122.3, 125.0, 126.1, 127.6, 128.6, 129.0, 135.6, 142.1, 143.2, 181.3; HRMS (ESI-TOF) m/z: Calcd. for C₁₄H₁₃N₂O [M+H]⁺: 225.1022; Found: 225.1026.

2q: White solid, m.p. 239.6-243.7 °C; yield 82%; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.21 (s,

6H), 2.54 (br s, 2H), 6.86-6.94 (m, 5H), 7.09 (d, J = 7.2 Hz, 1H), 7.18-7.21 (m, 1H), 10.40 (br s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 21.5, 64.4, 110.2, 122.3, 123.8, 124.9, 128.9, 129.0, 135.8, 137.5, 142.1, 143.0, 181.4; HRMS (ESI-TOF) m/z: Calcd. for C₁₆H₁₇N₂O [M+H]⁺: 253.1335; Found: 253.1337.

2r: White solid, m.p. 214.6-219.7 °C; yield 80%; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.72 (br s, 2H), 6.93-6.97 (m, 2H), 7.01 (d, J = 7.8 Hz, 1H), 7.06-7.09 (m, 1H), 7.14 (d, J = 7.8 Hz, 1H), 7.22-7.24 (m, 1H), 7.30-7.33 (m, 2H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 64.4, 110.4, 113.2 (d, $J_{CF} = 22.5$ Hz), 114.4 (d, $J_{CF} = 21.0$ Hz), 122.2, 122.5, 125.0, 129.2, 135.1, 142.1, 146.2, 146.3, 162.6 (d, $J_{CF} = 241.5$ Hz), 180.7; HRMS (ESI-TOF) m/z: Calcd. for C₁₄H₁₂FN₂O [M+H]⁺: 243.0928; Found: 243.0921.

2s: White solid, m.p. 63.9-67.6 °C; yield 80%; ¹H NMR (DMSO-*d*₆, 600 MHz) δ : 2.27 (s, 3H), 2.67 (br s, 2H), 6.89-6.91 (m, 1H), 6.96-6.98 (m, 1H), 7.03-7.12 (m, 3H), 7.18-7.20 (m, 2H), 10.46 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 150 MHz) δ : 21.6, 65.0, 111.0, 112.5 (d, *J*_{CF} = 24.3 Hz), 115.1 (d, *J*_{CF} = 23.1 Hz), 123.2, 126.6, 128.4, 128.6, 137.5, 137.6, 137.8, 138.2, 142.6, 158.6 (d, *J*_{CF} = 235.5 Hz), 181.1; HRMS (ESI-TOF) m/z: Calcd. for C₁₅H₁₄FN₂O [M+H]⁺: 257.1085; Found: 257.1089.

2t: White solid, m.p. 72.2-73.9 °C; yield 72%; ¹H NMR (DMSO-*d*₆, 600 MHz) δ: 1.60 (s, 3H), 2.18 (s, 3H), 3.20 (s, 3H), 6.66 (s, 1H), 6.98-7.02 (m, 2H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.18 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.18 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.18 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.18 (d, *J* = 7.0 Hz, 1H), 7.18-7.20 (m, 2H), 7.18 (d, *J* = 7.0 Hz, 1H), 7.18 (d, J = 7.0 Hz, 1

1H), 7.29-7.32 (m, 1H), 8.14 (d, J = 6.5 Hz, 1H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 19.1, 21.0, 26.6, 63.5, 108.8, 124.8, 126.1, 127.4, 127.9, 129.4, 131.5, 132.0, 133.0, 135.2, 140.3, 141.9, 179.1; HRMS (ESI-TOF) m/z: Calcd. for C₁₇H₁₉N₂O [M+H]⁺: 267.1492; Found: 267.1497.

2u: White solid, m.p. 86.5-89.3 °C; yield 71%; ¹H NMR (DMSO- d_6 , 600 MHz) δ : 1.60 (s, 3H), 2.68 (br s, 2H), 3.22 (s, 3H), 6.66-6.81 (m, 1H), 7.03 (d, J = 7.2 Hz, 1H), 7.10-7.12 (m, 1H), 7.15-7.23 (m, 2H), 7.30-7.33 (m, 1H), 8.06-8.11 (m, 1H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 19.1, 26.7, 63.7, 109.9 (d, $J_{CF} = 3.1$ Hz), 111.9 (d, $J_{CF} = 24.2$ Hz), 112.0, 115.3 (d, $J_{CF} = 24.3$ Hz), 126.2, 127.5, 128.2, 131.5, 134.8, 134.9, 135.2, 139.6, 140.4, 159.1 (d, $J_{CF} = 237.3$ Hz), 178.8; HRMS (ESI-TOF) m/z: Calcd. for C₁₆H₁₆FN₂O [M+H]⁺: 271.1241; Found: 271.1242.

2v: White solid, m.p. 56.0-60.1 °C; yield 78%; ¹H NMR (DMSO- d_6 , 600 MHz) δ : 1.20-1.22 (m, 3H), 2.76 (br s, 2H), 3.71-3.80 (m, 2H), 6.99 (d, J = 7.8 Hz, 1H), 7.01-7.04 (m, 1H), 7.06-7.10 (m, 1H), 7.13 (d, J = 7.8 Hz, 1H), 7.20 (d, J = 7.8 Hz, 1H), 7.30-7.34 (m, 3H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 13.0, 34.7, 64.0, 109.4, 113.2 (d, $J_{CF} = 22.5$ Hz), 114.4, 114.6, 122.1, 123.0, 124.8, 129.3, 134.6, 142.5, 146.1, 146.2, 162.7 (d, $J_{CF} = 241.5$ Hz), 178.6; HRMS (ESI-TOF) m/z: Calcd. for C₁₆H₁₆FN₂O [M+H]⁺: 271.1241; Found: 271.1247.

2w: Light yellow solid, m.p. 159.7-60.9 °C; yield 77%; ¹H NMR (DMSO- d_6 , 600 MHz) δ : 1.22-1.24 (m, 3H), 2.27 (s, 3H), 2.70 (br s, 2H), 3.72-3.81 (m, 2H), 7.04-7.06 (m, 2H), 7.15-7.18 (m, 3H), 7.39-7.41 (m, 2H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 13.0, 21.1, 34.7, 63.8, 109.1, 115.4 (d, $J_{CF} = 21.2$ Hz), 125.3, 128.1, 128.2, 129.4, 131.9, 135.0, 139.3, 140.0, 161.8 (d, $J_{CF} = 241.5$ Hz),

2x: White solid, m.p. 46.7-48.2 °C; yield 76%; ¹H NMR (DMSO- d_6 , 600 MHz) δ : 2.18 (s, 3H), 2.23 (s, 3H), 2.69 (br, 2H), 4.88 (d, J = 13.0 Hz, 1H), 4.96 (d, J = 13.0 Hz, 1H), 6.85 (d, J = 7.0 Hz, 1H), 6.98-7.01 (m, 2H), 7.05 (d, J = 5.5 Hz, 1H), 7.14-7.20 (m, 3H), 7.26-7.29 (m, 1H), 7.33-7.38 (m, 4H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 21.1, 21.6, 43.2, 64.4, 109.6, 123.2, 125.3, 126.6, 127.8, 127.9, 128.3, 128.6, 129.1, 132.1, 135.1, 137.0, 137.7, 140.1, 143.1, 179.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₃N₂O [M+H]⁺: 343.1805; Found: 343.1805.

2y: White solid, m.p. 135.5-137.8 °C; yield 77%; ¹H NMR (DMSO- d_6 , 600 MHz) δ : 2.20 (s, 3H), 4.89-4.95 (m, 2H), 6.84 (d, J = 8.4 Hz, 1H), 7.03 (s, 2H), 7.13-7.16 (m, 2H), 7.26-7.29 (m, 1H), 7.33-7.36 (m, 4H), 7.39-7.41 (m, 2H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 21.1, 43.3, 64.0, 109.7, 115.4 (d, $J_{CF} = 22.5$ Hz), 125.4, 127.6, 127.9, 128.3, 128.4, 129.1, 129.3, 132.3, 134.8, 136.9, 139.2, 140.1, 161.9 (d, $J_{CF} = 241.2$ Hz), 179.5; HRMS (ESI-TOF) m/z: Calcd. for $C_{22}H_{20}FN_2O$ [M+H]⁺: 347.1554; Found: 347.1559.

2z: White solid, m.p. 115.5-116.7 °C; yield 78%; ¹H NMR (DMSO- d_6 , 600 MHz) δ : 2.91 (br s, 2H), 6.80 (d, J = 8.4 Hz, 1H), 7.07-7.10 (m, 1H), 7.17-7.20 (m, 2H), 7.25-7.28 (m, 2H), 7.47-7.54 (m, 5H), 7.59-7.62 (m, 2H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 64.1, 109.7, 115.6 (d, $J_{CF} = 24.3$ Hz), 123.7, 125.2, 127.3, 128.4, 128.6, 129.2, 130.1, 134.6, 134.8, 139.0, 143.3, 161.9 (d, $J_{CF} = 243.3$ Hz), 179.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₆FN₂O [M+H]⁺: 319.1241; Found: 319.1235.

2za: White solid, m.p. 93.6-95.7 °C; yield 75%; ¹H NMR (DMSO- d_6 , 600 MHz) δ : 2.14 (s, 3H), 2.87 (s, 3H), 2.93 (d, J = 12.6 Hz, 1H), 3.00 (d, J = 12.6 Hz, 1H), 6.67 (d, J = 7.8 Hz, 2H), 6.74 (d, J = 7.8 Hz, 1H), 6.83 (d, J = 7.8 Hz, 2H), 6.99-7.02 (m, 1H), 7.16-7.19 (m, 1H), 7.29 (d, J = 7.2 Hz, 1H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ : 21.0, 26.1, 45.1, 62.8, 108.4, 122.3, 124.3, 128.4, 128.8, 130.0, 132.1, 132.9, 135.6, 143.6, 179.7; HRMS (ESI-TOF) m/z: Calcd. for C₁₇H₁₉N₂O [M+H]⁺: 267.1492; Found: 267.1487.

4. Gram scale synthesis of the product 2a

In a sealed tube equipped with a magnetic stirring bar, to 20 mL of $NH_3 \cdot H_2O$ (25%) was added **1a** (0.51 g, 2.0 mmol). The reaction mixture was stirred at rt for 3 h. After completion of the reaction, as indicated by TLC, purification by flash column chromatography (hexane/EtOAc, 6/1, v/v) was carried out to furnish the corresponding product **2a** (0.38 g, 80% yield).

5. Bromooxindole 1a' as a test substrate.

In a sealed tube equipped with a magnetic stirring bar, to 2.0 mL of $NH_3 \cdot H_2O$ (25%) was added **1a'** (0.20 mmol). The reaction mixture was stirred at rt for 3 h. After completion of the reaction, as indicated by TLC, purification by flash column chromatography (hexane/EtOAc, 6/1, v/v) was carried out to furnish the corresponding product **2a** in 76% yield.

6. Figure S1: new species detected by ESI-MS analysis.

7. X-ray crystal data for compounds 2d and 2g

Table S1	Crystal	data	and	structure	refinement	for	2d
----------	---------	------	-----	-----------	------------	-----	----

Identification code	2d
Empirical formula	$C_{15}H_{13}ClN_2O$
Formula weight	272.72
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å, b/Å, c/Å	11.3479(5), 10.0774(5), 11.9461(6)
α /°, β /°, γ /°	90, 98.694(4), 90.
Volume/Å ³	1350.43(11)
Ζ	4
$\rho_{calc}g/cm^3$	1.341
μ/mm ⁻¹	0.276
F(000)	568.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.1$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.314 to 49.982
Index ranges	$-11 \le h \le 13, -11 \le k \le 9, -13 \le l \le 14$
Reflections collected	6037
Independent reflections	2370 [$R_{int} = 0.0315$, $R_{sigma} = 0.0405$]
Data/restraints/parameters	2370/0/180
Goodness-of-fit on F ²	1.070
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0457, wR_2 = 0.1136$
Final R indexes [all data]	$R_1 = 0.0561, wR_2 = 0.1220$
Largest diff. peak/hole / e Å ⁻³	0.90/-0.52

Crystal structure determination of 2d

Crystal Data for C₁₅H₁₃ClN₂O (M =272.72 g/mol): monoclinic, space group P2₁/c (no. 14), a = 11.3479(5) Å, b = 10.0774(5) Å, c = 11.9461(6) Å, β = 98.694(4)°, V = 1350.43(11) Å³, Z = 4, T = 100.00(10) K, μ (MoK α) = 0.276 mm⁻¹, *Dcalc* = 1.341 g/cm³, 6037 reflections measured (5.314° ≤ 2 Θ ≤ 49.982°), 2370 unique (R_{int} = 0.0315, R_{sigma} = 0.0405) which were used in all calculations. The final R_1 was 0.0457 (I > 2 σ (I)) and wR_2 was 0.1220 (all data).

Table S2 Crystal data and structure refinement for 2g Identification code 2g Empirical formula C₁₆H₁₅ClN₂O Formula weight 286.75 Temperature/K 100.00(10)Crystal system monoclinic Space group $P2_1/c$ a/Å, b/Å, c/Å 12.8233(13), 10.2114(7), 12.0326(13) $\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ}$ 90, 116.906(13), 90. Volume/Å³ 1405.0(3) Ζ 4 $\rho_{calc}g/cm^3$ 1.356 μ/mm^{-1} 0.268 F(000) 600.0 Crystal size/mm³ $0.14 \times 0.12 \times 0.11$ Radiation MoK α ($\lambda = 0.71073$) 20 range for data collection/° 5.348 to 49.992 $-13 \le h \le 15, -12 \le k \le 11, -14 \le l \le 10$ Index ranges Reflections collected 5918 2474 [$R_{int} = 0.0324$, $R_{sigma} = 0.0468$] Independent reflections Data/restraints/parameters 2474/0/190 Goodness-of-fit on F² 1.022

Crystal structure determination of 2g

Final R indexes $[I \ge 2\sigma(I)]$

Largest diff. peak/hole / e Å⁻³

Final R indexes [all data]

Crystal Data for C₁₆H₁₅ClN₂O (M=286.75 g/mol): monoclinic, space group P2₁/c (no. 14), a = 12.8233(13) Å, b = 10.2114(7) Å, c = 12.0326(13) Å, β = 116.906(13)°, V = 1405.0(3) Å³, Z = 4, T = 100.00(10) K, μ (MoK α) = 0.268 mm⁻¹, *Dcalc* = 1.356 g/cm³, 5918 reflections measured (5.348° $\leq 2\Theta \leq 49.992°$), 2474 unique ($R_{int} = 0.0324$, $R_{sigma} = 0.0468$) which were used in all calculations. The final R_1 was 0.0437 (I > 2 σ (I)) and wR_2 was 0.1027 (all data).

0.27/-0.32

 $R_1 = 0.0437$, $wR_2 = 0.0944$

 $R_1 = 0.0562, wR_2 = 0.1027$

8. The copies of 1H NMR and 13C NMR spectra for compounds 2 ¹H and ¹³C NMR of 2a

¹H and ¹³C NMR of 2b

¹H and ¹³C NMR of 2c

¹H and ¹³C NMR of 2d

¹H and ¹³C NMR of 2e

¹H and ¹³C NMR of 2f

¹H and ¹³C NMR of 2g

¹H and ¹³C NMR of 2h

¹H and ¹³C NMR of 2i

¹H and ¹³C NMR of 2j

¹H and ¹³C NMR of 2k

¹H and ¹³C NMR of 2l

¹H and ¹³C NMR of 2m

¹H and ¹³C NMR of 2n

¹H and ¹³C NMR of 2p

¹H and ¹³C NMR of 2q

¹H and ¹³C NMR of 2r

¹H and ¹³C NMR of 2s

¹H and ¹³C NMR of 2t

¹H and ¹³C NMR of 2u

¹H and ¹³C NMR of 2w

¹H and ¹³C NMR of 2x

¹H and ¹³C NMR of 2y

¹H and ¹³C NMR of 2z

¹H and ¹³C NMR of 2za

