Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

for

Mechanochemical Synthesis of Cu(I)-N-Heterocyclic Carbene Complexes

Gianmarco Pisanò and Catherine S. J. Cazin*

Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 – S3, 9000 Ghent, Belgium. E-mail: <u>catherine.cazin@ugent.be</u>.

Contents

General information	S2
Synthesis of complexes	S2
General procedure	S2
[Cu(Cl)(IPr)] - Small scale	S2
[Cu(Cl)(IPr)] - Large scale	S2
Synthesis of [Cu(Cl)(SIPr)]	S3
Synthesis of [Cu(Cl)(IMes)]	S3
Synthesis of [Cu(Cl)(SIMes)]	
Synthesis of [Cu(Cl)(IPr*)]	S4
Synthesis of [Cu(Cl)(ItBu)]	S4
Synthesis of [Cu(Cl)(MIC)]	S4
NMR spectra of complexes	S5
References	S8

General information

Ball-milling experiments were performed in a planetary mill (Pulverisette 5/4, Fritsch). NMR spectra were recorded on a Bruker ADVANCE 400 MHz spectrometer. NMR chemical shifts are reported in ppm with solvent residual peak as reference (CHCl₃: δ_{H} = 7.26 ppm) at 298K. CDCl₃, K₂CO₃ and CuCl were purchased and used as received. (S)IPr·HCl, (S)IMes·HCl, IPr*·HCl, I^tBu·HCl and MIC·HCl were synthesized following literature procedures.¹⁻⁵ Silica gel P60 (230-400 mesh) was used for chromatography.

Synthesis of complexes

General procedure

A 12 mL milling jar (ZrO₂) equipped with 18 balls 5 mm \emptyset (ZrO₂) was charged with NHC·HCl and CuCl which were ground (400 rpm) for 10 min. K₂CO₃ was added and the reaction mixture was ground for 3 x 30 min (400 rpm). The crude product was extracted (CH₂Cl₂ or acetone) and filtered (SiO₂). After concentration, pentane was added, and the product was collected by filtration. When the product was extracted from the reactor using acetone, filtration through SiO₂ and reducing of the solvent volume by vacuum permits the product to precipitate and alleviates the need for pentane co-solvent use.

[Cu(Cl)(IPr)] - Small scale

Following the general procedure with IPr·HCl (200 mg, 0.471 mmol), CuCl (47 mg, 0.471 mmol) and K_2CO_3 (195 mg, 1.412 mmol), [Cu(Cl)(IPr)] was obtained as a colourless solid in 78% yield (178 mg, 0.365 mmol). When the product was extracted from the reactor using acetone, filtration through SiO₂ and reducing of the solvent volume by vacuum permits the product to precipitate and alleviates the need for pentane co-solvent use. This acetone extraction/filtration/precipitation leads to yields of 76% yield

[Cu(Cl)(IPr)] - Large scale

A 500 mL milling jar (ZrO₂) equipped with 764 balls 5 mm \emptyset (ZrO₂) was charged with IPr·HCl (5.0 g, 11.76 mmol), CuCl (1.16 g, 11.76 mmol) and K₂CO₃ (4.88 g, 35.29 mmol). The reaction mixture was ground for 10 min (400 rpm). The crude product was extracted with (CH₂Cl₂) and filtered (SiO₂). After concentration, pentane was added and the product was collected by filtration. [Cu(Cl)(IPr)] was obtained as a colourless solid in 75% yield (4.30 g, 8.82 mol).

¹H NMR (400 MHz, CDCl₃, 298K) δ = 1.24 (d, ³J_{HH} = 8 Hz, 12H, CH-C<u>H</u>₃), 1.31 (d, ³J_{HH} = 6.8 Hz, 12H, CH-C<u>H</u>₃), 2.58 (spt, ³J_{HH} = 6.9 Hz, 4H, C<u>H</u>-CH₃), 7.14 (s, 2H, NCH=CHN), 7.31 (d, J=7.8 Hz, 4H, ArH), 7.47-7.53 (m, 2 H, ArH). The spectrum matches data from the literature.⁶

Synthesis of [Cu(Cl)(SIPr)]

Following the general procedure with SIPr·HCl (200 mg, 0.47 mmol), CuCl (46 mg, 0.47 mmol) and K_2CO_3 (194 mg, 1.40 mmol), [Cu(Cl)(SIPr)] was obtained as a colourless solid in 66% yield (151 mg, 0.31 mmol).

¹H NMR (400 MHz, CDCl₃, 298K): δ = 1.37 (app. t, 24H, CH-C<u>H</u>₃), 3.08 (spt, ³J_{HH} = 6.9 Hz, 4H, C<u>H</u>-CH₃) 4.03 (s, 4H, NCH₂CH₂N), 7.23-7.29 (m, 4H, ArH), 7.23-7.29 (m, 2H, ArH). The spectrum matches data from the literature.⁶

Synthesis of [Cu(Cl)(IMes)]

Following the general procedure with IMes·HCl (200 mg, 0.59 mmol), CuCl (58 mg, 0.59 mmol) and K_2CO_3 (243 mg, 1.76 mmol), [Cu(Cl)(IMes)] was obtained as a colourless solid in 65% yield (154 mg, 0.38 mmol).

¹H NMR (400 MHz, CDCl₃, 298K): δ = 2.11 (s, 12H, CH₃), 2.36 (s, 6H, CH₃), 7.01 (s, 4H, ArH), 7.06 (s, 2H, NCH=CHN). The spectrum matches data from the literature.⁶

Synthesis of [Cu(Cl)(SIMes)]

Following the general procedure with SIMes·HCl (200 mg, 0.58 mmol), CuCl (58 mg, 0.58 mmol) and K_2CO_3 (242 mg, 1.75 mmol), [Cu(Cl)(SIMes)] was obtained as a colourless solid in 53% yield (124 mg, 0.31 mmol).

¹H NMR (400 MHz, CDCl₃, 298K): δ = 2.31 (s, 6H, CH₃), 2.32 (s, 6H, CH₃), 3.96 (s, 4H, NCH₂CH₂N), 6.96 (s, 4H, ArH). The spectrum matches data from the literature.⁶

Synthesis of [Cu(Cl)(IPr*)]

Following the general procedure with IPr*·HCl (200 mg, 0.21 mmol), CuCl (21 mg, 0.21 mmol) and K_2CO_3 (87 mg, 0.63 mmol), [Cu(Cl)(IPr*)] was obtained as a colourless solid in 72% yield (152 mg, 0.15 mmol).

¹H NMR (400 MHz, CDCl₃, 298K): δ = 2.23 (s, 6H, CH₃), 5.20 (s, 4H, CH-Ph₂), 5.82 (s, 2H, NCH=CHN), 6.85 (s, 4H, ArH), 6.87-6.93 (m, 8H, ArH), 7.02 (m, 8H, ArH), 7.12-7.23 (m, 24H, ArH). The spectrum matches data from the literature.⁶

Synthesis of [Cu(Cl)(ItBu)]

Following the general procedure with I^tBu·HCl (200 mg, 0.92 mmol), CuCl (91 mg, 0.92 mmol) and K_2CO_3 (383 mg, 2.77 mmol), [Cu(Cl)(I^tBu)] was obtained as a coloourless solid in 48% yield (124 mg, 0.44 mmol).

¹H NMR (400 MHz, CDCl₃, 298K): δ = 1.79 (s, 18H, C(CH₃)₃), 7.05 (s, 2H, NCH=CHN). The spectrum matches data from the literature.⁶

Synthesis of [Cu(Cl)(MIC)]

Following the general procedure with MIC·HCl (200 mg, 0.49 mmol), CuCl (48 mg, 0.49 mmol) and K_2CO_3 (201 mg, 1.46 mmol), [Cu(Cl)(MIC)] was obtained as a colourless solid in 36% yield (83 mg, 0.17 mmol).

¹H NMR (400 MHz, CDCl₃, 298K): δ = 1.17 (d, ³J_{HH} = 6.8 Hz, 6H, CH-C<u>H</u>₃), 1.31 (d, ³J_{HH} = 6.8 Hz, 6H, CH-C<u>H</u>₃), 1.39 (s, 9H, C(CH₃)₃), 2.32 (sept, ³J_{HH} = 6.8 Hz, 2H, C<u>H</u>(CH₃)₂), 4.25 (s, 3H, N-CH₃), 7.29-7.30 (m, 2H, ArH), 7.51-7.55 (m, 1H, ArH), 7.55-7.60 (m, 2H, ArH), 7.67-7.73 (m, 2H, ArH). The spectrum matches data from the literature.⁵

NMR spectra of complexes

References

- 1 X. Bantreil and S. P. Nolan, Nat Protoc., 2011, 6, 69-77.
- 2 M. Hans, J. Lorkowski, A. Demonceau and L. Delaude, *Beilstein J. Org. Chem.*, 2015, **11**, 2318-2325.
- 3 G. Berthon-Gelloz, M. A. Siegler, A. L. Spek, B. Tinant, J. N. H. Reek and I. E. Markó, *Dalton Trans.*, 2010, **39**, 1444-1446.
- 4 S. Paul, B. P. Joy, R. Rajendran and V. B. Gudimetla, *Chemistryselect*, 2019, 4, 7181-7186.
- 5 Y. D. Bidal, M. Lesieur, M. Melaimi, F. Nahara, D. B. Cordes, K. S. A. Arachchige, A. M. Z. Slawin, G. Bertrand and C. S. J. Cazin, *Adv. Synth. Catal.*, 2015, **357**, 3155-3161.
- Santoro, A. Collado, A. M. Z. Slawin, S. P. Nolan and C. S. J. Cazin, *Chem. Commun.*, 2013, 49, 10483-10485.