Electronic Supplementary Information

Catholyte-free electroreduction of CO_2 for sustainable production of CO: Concept, process development, technoeconomic analysis, and CO_2 reduction assessment

Jaeseo Lee^{a,†}, Wonhee Lee^{b,†}, Kyung Hwan Ryu^c, Joungho Park^b, Hyojin Lee^b, Jay H. Lee^{a,*}, Ki Tae Park^{b,*}

^a Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong, Daejeon, 34141, Republic of Korea

^b Korea Institute of Energy Research, Gajeong-ro 152, Yuseong, Daejeon, 34129, Republic of Korea

^c Department of Chemical Engineering, Sunchon National University, 225 Jungang-ro, Suncheon,

Jeollanam-do, 57922, Republic of Korea

* Corresponding author, TEL: +82-42-350-3926, FAX:+82-42-350-3926, E-mail: jayhlee@kaist.ac.kr

* Corresponding author, TEL: +82-42-860-3257, FAX: +82-42-860-3134, E-mail: ktpark@kier.re.kr

Table of Contents

1.	Construction of full flow cells for the CF-ECO ₂ R and GDE-catholyte systems2
2.	Combination of 3-stage membrane and oxy-combustion process (Case 1)
3.	Combination of 3-stage membrane and amine-based CO ₂ capture process (Case 2)
4.	Combination of amine-based CO ₂ capture process and H ₂ PSA process (Case 3)9
5.	Mathematical model for the CF-ECO ₂ R process
6.	CO ₂ lifecycle assessment method
7.	Techno-economic analysis method
8.	Simulation result
9.	References

1. Construction of full flow cells for the CF-ECO2R and GDE-catholyte systems

Fig. S1. Construction of a full flow cell for a) the CF-ECO₂R and b) GDE-catholyte systems.

2. Combination of 3-stage membrane and oxy-combustion process (Case 1)

Fig. S2. PFD of Case 1: combination of 3-stage membrane and oxy-combustion process.

Table S1. Stream table (Case 1)

	Units	1	2	3	4	5	6	7	8	9	10
Temperature	С	100	126.7	89	89	89	40	40	40	90	90
Pressure	bar	1	1.28	1	1.5	1	1	1	1	1	1
Mass flow rate	kg/hr	140,368	140,368	168,464	3,645,763	3,645,763	3,814,227	118,840	3,695,387	3,695,387	63,172
Mole flow rate	kmol/hr	3,282	3,282	4,841	202,370	202,370	208,108	3,679	204,430	204,430	2,846
Volume flow rate	L/sec	28,280	23,676	45,041	1,089	1,089	44,093	29,156	10,009	24,953	23,867
Mass flow rate		,	,	,	, ,		,		,	,	
H_2O	kg/hr	2,807	2,807	30,904	3,645,763	3,645,763	3,675,650	8,951	3,666,699	3,666,699	35,925
СО	kg/hr	0	0	0	0	0	48,645	48,645	0	0	0
CO_2	kg/hr	137,561	137,561	137,561	0	0	61,131	61,131	0	0	0
H_2	kg/hr	0	0	0	0	0	114	114	0	0	0
O_2	kg/hr	0	0	0	0	0	28,688	0	28,688	28,688	27,248
	Units	11	12	13	14	15	16	17	18	19	20
Temperature	С	90	30	30	30	40	40	40	149.1	25	25
Pressure	bar	1	1	1	1	1	1	1	2.5	2.5	2.5
Mass flow rate	kg/hr	3,632,215	63,172	27,853	35,319	118,840	114,382	4,458	114,382	114,382	110,390
Mole flow rate	kmol/hr	201,583	2,846	887	1,959	3,679	3,433	245,781	3,433	3,433	3,217
Volume flow rate	L/sec	1,086	6,219	6,209	10	29,156	24,830	1	13,392	8,862	8,861
Mass flow rate											
H_2O	kg/hr	3,630,775	35,925	678	35,247	8,951	4,546	4,406	4,546	4,546	722
CO	kg/hr	0	0	0	0	48,645	48,641	3	48,641	48,641	48,632
CO_2	kg/hr	0	0	0	0	61,131	61,082	49	61,082	61,082	60,923
H_2	kg/hr	0	0	0	0	114	114	0	114	114	114
O_2	kg/hr	1,440	27,248	27,125	72	0	0	0	0	0	0
	Units	21	22	23	24	25	26	27	27-1	28	29
Temperature	С	25	161.4	25	25	25	25	25	25	31.7	25
Pressure	bar	2.5	8	8	8	8	8	8	1	1	8
Mass flow rate	kg/hr	3,992	110,390	110,390	109,808	582	47,822	61,986	61,986	9,032	32,301
Mole flow rate	kmol/hr	216	3,217	3,217	3,187	30	1,595	1,592	1,592	492	1,136

Volume flow rate	L/sec	1	4,036	2,743	2,743	0	1,373	1,364	10,779	17	978
Mass flow rate											
H_2O	kg/hr	3,824	722	722	214	507	0	214	214	8,737	0
CO	kg/hr	9	48,632	48,632	48,628	4	38,805	9,823	9,823	16	30,967
CO_2	kg/hr	159	60,923	60,923	60,852	71	9,006	51,846	51,846	279	1,333
H_2	kg/hr	0	114	114	114	Trace	11	103	103	0	1
O ₂	kg/hr	0	0	0	0	0	0	0	0	0	0
	Units	30	30-1	31	32	32-1	33	34	35	37	
Temperature	С	25	25	2	25	25	21.5	30	30	25	
Pressure	bar	8	1	8	8	1	1	1	1	1	
Mass flow rate	kg/hr	15,522	15,522	24,909	7,392	7,392	84,899	14,926	12,927	99,825	
Mole flow rate	kmol/hr	459	459	887	250	250	2,300	475	412	2,320	
Volume flow rate	L/sec	395	3,161	763	215	1,719	15,652	3,328	2,882	15,978	
Mass flow rate											
H_2O	kg/hr	0	0	0	0	0	214	363	315	1,593	
CO	kg/hr	7,839	7,839	24,711	6,255	6,255	23,917	0	0	0	
CO_2	kg/hr	7,673	7,673	197	1,136	1,136	60,654	0	0	98,232	
H_2	kg/hr	10	10	0	1	1	114	0	0	0	
O_2	kg/hr	0	0	0	0	0	0	14,563	12,613	0	

3. Combination of 3-stage membrane and amine-based CO₂ absorption process (Case 2)

Fig. S3. Detailed system configuration of Case 2: combination of 3-stage membrane and amine-based CO₂ absorption process.

Table S2. Stream table (Case 2)

	Units	1	2	3	4	5	6	7	8	9	10
Temperature	С	100	126.7	89	89	89	40	40	40	90	90
Pressure	bar	1	1.28	1	1.5	1	1	1	1	1	1
Mass flow rate	kg/hr	140,368	140,368	168,464	3,645,763	3,645,763	3,814,227	118,840	3,695,387	3,695,387	63,172
Mole flow rate	kmol/hr	3,282	3,282	4,841	202,370	202,370	208,108	3,679	204,430	204,430	2,846
Volume flow rate	L/sec	28,280	23,676	45,041	1,089	1,089	44,093	29,156	10,009	24,953	23,867
Mass flow rate											
H_2O	kg/hr	2,807	2,807	30,904	3,645,763	3,645,763	3,675,650	8,951	3,666,699	3,666,699	35,925
CO	kg/hr	0	0	0	0	0	48,645	48,645	0	0	0
CO_2	kg/hr	137,561	137,561	137,561	0	0	61,131	61,131	0	0	0
H_2	kg/hr	0	0	0	0	0	114	114	0	0	0
O_2	kg/hr	0	0	0	0	0	28,688	0	28,688	28,688	27,248
	Units	11	12	13	14	15	16	17	18	19	20
Temperature	С	90	30	30	30	40	40	40	149.1	25	25
Pressure	bar	1	1	1	1	1	1	1	2.5	2.5	2.5
Mass flow rate	kg/hr	3,632,215	63,172	27,853	35,319	118,840	114,382	4,458	114,382	114,382	110,390
Mole flow rate	kmol/hr	201,583	2,846	887	1,959	3,679	3,433	245,781	3,433	3,433	3,217
Volume flow rate	L/sec	1,086	6,219	6,209	10	29,156	24,830	1	13,392	8,862	8,861
Mass flow rate											
H_2O	kg/hr	3,630,775	35,925	678	35,247	8,951	4,546	4,406	4,546	4,546	722
CO	kg/hr	0	0	0	0	48,645	48,641	3	48,641	48,641	48,632
CO_2	kg/hr	0	0	0	0	61,131	61,082	49	61,082	61,082	60,923
H_2	kg/hr	0	0	0	0	114	114	0	114	114	114
O_2	kg/hr	1,440	27,248	27,125	72	0	0	0	0	0	0
	Units	21	22	23	24	25	26	27	27-1	28	29
Temperature	С	25	161.4	25	25	25	25	25	25	31.7	25
Pressure	bar	2.5	8	8	8	8	8	8	1	1	8
Mass flow rate	kg/hr	3,992	110,390	110,390	109,808	582	47,822	61,986	61,986	9,032	32,301
Mole flow rate	kmol/hr	216	3,217	3,217	3,187	30	1,595	1,592	1,592	492	1,136

Volume flow rate	L/sec	1	4,036	2,743	2,743	0	1,373	1,364	10,779	17	978
Mass flow rate											
H_2O	kg/hr	3,824	722	722	214	507	0	214	214	8,737	0
CO	kg/hr	9	48,632	48,632	48,628	4	38,805	9,823	9,823	16	30,967
CO_2	kg/hr	159	60,923	60,923	60,852	71	9,006	51,846	51,846	279	1,333
H_2	kg/hr	0	114	114	114	Trace	11	103	103	0	1
O ₂	kg/hr	0	0	0	0	0	0	0	0	0	0
	Units	30	30-1	31	32	32-1	33	34	35		
Temperature	С	25	25	2	25	25	21.5	40	60		
Pressure	bar	8	1	8	8	1	1	2	1		
Mass flow rate	kg/hr	15,522	15,522	24,909	7,392	7,392	84,899	60,059	24,840		
Mole flow rate	kmol/hr	459	459	887	250	250	2,300	1,365	935		
Volume flow rate	L/sec	395	3,161	763	215	1,719	15,652	4,936	7,196		
Mass flow rate											
H_2O	kg/hr	0	0	0	0	0	214	11	203		
CO	kg/hr	7,839	7,839	24,711	6,255	6,255	23,917	0	23,917		
CO_2	kg/hr	7,673	7,673	197	1,136	1,136	60,654	60,048	607		
H_2	kg/hr	10	10	0	1	1	114	0	114		
O_2	kg/hr	0	0	0	0	0	0	0	0		

4. Combination of amine-based CO₂ absorption process and H₂ PSA processes (Case 3)

Fig. S4. Detailed system configuration of Case 3: combination of amine-based CO₂ absorption process and H₂ pressure swing adsorption.

Table S3. Stream table (Case 3)

	Units	1	2	3	4	5	6	7	8	9	10
Temperature	С	100	126.7	89	89	89	40	40	40	90	90
Pressure	bar	1	1.28	1	1.5	1	1	1	1	1	1
Mass flow rate	kg/hr	71,545	71,545	85,866	1,858,230	1,858,230	1,944,095	60,572	1,883,523	1,883,523	32,199
Mole flow rate	kmol/hr	1,673	1,673	2,468	103,147	103,147	106,072	1,875	104,197	104,197	1,450
Volume flow rate	L/sec	14,414	12,068	22,957	555	555	14,091	12,656	3,273	12,718	12,165
Mass flow rate	kg/hr										
H_2O	kg/hr	1,431	1,431	15,752	1,858,230	1,858,230	1,873,463	4,562	1,868,901	1,868,901	18,311
CO	kg/hr	0	0	0	0	0	24,794	24,794	0	0	0
CO_2	kg/hr	70,114	70,114	70,114	0	0	31,158	31,158	0	0	0
H_2	kg/hr	0	0	0	0	0	58	58	0	0	0
O_2	kg/hr	0	0	0	0	0	14,622	0	14,622	14,622	13,888
	Units	11	12	13	14	15	16	17	18	19	20
Temperature	С	90	30	30	30	40	40	40	40	60	194
Pressure	bar	1	1	1	1	1	1	1	2	1	2.5
Mass flow rate	kg/hr	1,851,324	32,199	14,197	18,002	60,572	58,300	2,272	31,108	27,192	27,192
Mole flow rate	kmol/hr	102,746	1,450	452	998	1,875	1,750	125	707	1,043	1,043
Volume flow rate	L/sec	554	3,170	3,165	5	12,656	12,656	1	2,557	8,024	4,5014
Mass flow rate											
H_2O	kg/hr	1,850,590	18,311	346	17,965	4,562	2,317	2,246	6	2,311	2,311
CO	kg/hr	0	0	0	0	24,794	24,792	2	0	24,792	24,792
CO_2	kg/hr	0	0	0	0	31,158	31,133	25	31,102	31	31
H_2	kg/hr	0	0	0	0	58	58	0	0	58	58
O_2	kg/hr	734	13,888	13,851	37	0	0	0	0	0	0
	Units	21	22	23	24	25	26	27	28	29	
Temperature	С	25	25	25	141.8	25	25	25	25	25	
Pressure	bar	2.5	2.5	2.5	6	6	6	6	6	6	
Mass flow rate	kg/hr	27,192	25,084	2,109	25,084	25,084	24,958	125	49	24,909	
Mole flow rate	kmol/hr	1,043	926	117	926	926	919	7	24	895	

L/sec	2,551	2,550	1	1,479	1,055	1,055	0	28	1,027	
kg/hr	2,311	211	2,100	211	211	87	124	0	87	
kg/hr	24,792	24,784	9	24,784	24,784	24,782	1	0	24,782	
kg/hr	31	31	0	31	31	31	0	0	31	
kg/hr	58	58	0	58	58	58	0	49	9	
kg/hr	0	0	0	0	0	0	0	0	0	
	L/sec kg/hr kg/hr kg/hr kg/hr kg/hr	L/sec 2,551 kg/hr 2,311 kg/hr 24,792 kg/hr 31 kg/hr 58 kg/hr 0	L/sec2,5512,550kg/hr2,311211kg/hr24,79224,784kg/hr3131kg/hr5858kg/hr00	L/sec2,5512,5501kg/hr2,3112112,100kg/hr24,79224,7849kg/hr31310kg/hr58580kg/hr000	L/sec2,5512,55011,479kg/hr2,3112112,100211kg/hr24,79224,784924,784kg/hr3131031kg/hr5858058kg/hr0000	L/sec2,5512,55011,4791,055kg/hr2,3112112,100211211kg/hr24,79224,784924,78424,784kg/hr313103131kg/hr585805858kg/hr00000	L/sec2,5512,55011,4791,0551,055kg/hr2,3112112,10021121187kg/hr24,79224,784924,78424,78424,782kg/hr31310313131kg/hr58580585858kg/hr000000	L/sec2,5512,55011,4791,0551,0550kg/hr2,3112112,10021121187124kg/hr24,79224,784924,78424,78424,7821kg/hr313103131310kg/hr585805858580kg/hr0000000	L/sec2,5512,55011,4791,0551,055028kg/hr2,3112112,100211211871240kg/hr24,79224,784924,78424,78424,78210kg/hr3131031313100kg/hr58580585858049kg/hr0000000	L/sec2,5512,55011,4791,0551,0550281,027kg/hr2,3112112,10021121187124087kg/hr24,79224,784924,78424,78424,7821024,782kg/hr313103131310031kg/hr585805858580499kg/hr00000000

5. Mathematical model for the CF-ECO₂R process

Mathematical model for the CF-ECO₂R process is referred form published studies.¹⁻³ The modeling assumptions are summarized as follows:^{3, 4}

- Molar transport phenomena are dominant in the length direction, whereas they are negligible in the directions of cell width and height. Therefore, the model is developed in one dimension to reduce the computational time.
- 2. Isothermal conditions as validated in the experiments, due to the excess of CO₂ gas and the small cell dimensions.
- 3. The kinetic rates of the electrochemical reactions can be described by the Butler-Volmer equation, which has been widely used to describe the kinetics of electrochemical reactions.
- 4. The catalyst layer is treated as an infinitely thin film interface in contact with the electrolyte.
- 5. Mass transfer limitation is assumed not to play significant role at the current density. The catholyte solution is saturated with CO₂.

The species transport equations are mathematically described by the Nernst-Planck equation.^{3, 4}

 $\nabla \cdot N = R$

$$V^{i}N_{i} = -D_{i}\nabla C_{i} - z_{i}u_{mi}FC_{i}\nabla \Phi + uC_{i}$$

$$V^{*} MERGEFORMAT (1)$$

$$V^{*} MERGEFORMAT (2)$$

$$u_{mi} = \frac{D_{i}}{RT}$$

$$V^{*} MERGEFORMAT (3)$$

where N_i is the species molar flux $(molm^{-2}s^{-1})$; R_i is the reaction rate term of species i; D_i is the diffusion coefficient of species i (m^2s^{-1}) ; C_i is the molar concentration of species i $(mol \cdot m^{-3})$; z_i is the species charge of species i; u_{mi} is the species mobility of species i ($mol \cdot m^2 \cdot s^{-1} \cdot V^{-1} \cdot C^{-1}$); F is the Faradaic constant (96, 485*Cmol*⁻¹); Φ is the cell potential (V); u is the velocity $(m \cdot s^{-1})$.

The electric potential equation is described as follows:²⁻⁴

$$\sigma \nabla^2 \Phi = S_{\phi} \qquad \qquad \land * \text{ MERGEFORMAT (4)}$$

$$S_{\phi} = \frac{A_{cell}}{V_{cell}} \sum j_i \qquad \qquad \land * \text{ MERGEFORMAT (5)}$$

where σ is the electric conductivity (Sm^{-1}) ; S_{Φ} is the sink term in the charge equation; A_{cell} is the area of the computational cell (m^2) ; V_{cell} is the volume of the computational cell (m^3) ; j_i is the current density for species $i (A \cdot m^{-2})$.

The reaction kinetics is described by the Butler-Volmer equation.¹⁻⁴

$$j_{i} = j_{0,i} \left\{ \frac{C_{O}^{surface}}{C_{O}^{bulk}} \exp\left[\frac{\alpha_{an,i}nF\eta_{i}}{RT}\right] - \frac{C_{R}^{surface}}{C_{R}^{bulk}} \exp\left[-\frac{\alpha_{ca,i}nF\eta_{i}}{RT}\right] \right\}$$

$$\land * \text{MERGEFORMAT (6)}$$

where j_i is the electrode current density of reaction $i (mAcm^{-2})$; $j_{0,i}$ is the exchange current density of reaction $i (mAcm^{-2})$; $C_o^{surface}$ and $C_R^{surface}$ are the electrode's surface concentration

of the species to be oxidized and to be reduced, respectively; C_o^{bulk} and C_R^{bulk} are the bulk concentration of the species to be oxidized and to be reduced, respectively; n is the electron transfer number of the rate-determining step; $\alpha_{an,i}$ and $\alpha_{ca,i}$ are the anodic and cathodic charge transfer coefficient of reaction i, respectively; R is the universal gas constant (=8.314 $JK^{-1}mol^{-1}$); F is the Faraday constant (=96485 $Cmol^{-1}$); T is the temperature (K); η_i is the electrode overpotential of reaction i (V).

The reaction rate R_i is described as follows:

$$r_{ij} = \frac{v_{ij}j_i}{z_j F} \qquad \qquad \land * \text{ MERGEFORMAT (7)}$$
$$R_j = \sum_i r_{ij} \qquad \qquad \land * \text{ MERGEFORMAT (8)}$$

where r_{ij} is the reaction of species j in reaction i; v_{ij} is the stoichiometry of species j in the electrochemical reaction i.

-		
Notation	Estimated value	Unit
α_{rxn3}	0.10	V
α_{rxn4}	0.09	V
$j_{0,rxn3}$	85.6	mAcm ⁻²
$\dot{J}_{0,rxn4}$	0.20	mAcm ⁻²

Table S4 Estimated values of key model parameters of the CF-ECO₂R process

Fig. S5. Verification of the CF-ECO₂R model against experimental data.

6. CO₂ lifecycle assessment method

Lifecycle assessment (LCA) is a method to evaluate and analyze the environmental influences of products and processes taking into consideration their system boundaries and set functional unit. The CO₂ LCA is described by estimating the direct and indirect CO₂ emission and net CO₂ emission, which is calculated by the direct and indirect CO₂ emission.⁵⁻⁷

$$F_{CO_{2}}^{D/I} = F_{i} \cdot GWP_{i} \qquad \qquad \land * \text{ MERGEFORMAT (9)}$$

$$E_{CO_2}^D = \sum \frac{F_{CO_2}^D}{F_P} \qquad \qquad \land * \text{ MERGEFORMAT (10)}$$

- $E_{CO_2}^{C} = \sum \frac{F_{CO_2}^{C}}{F_P}$ * MERGEFORMAT (12)
- $E_{CO_{2}}^{N} = E_{CO_{2}}^{D} + E_{CO_{2}}^{I} E_{CO_{2}}^{C}$ * MERGEFORMAT (13)

where F_i is the value of component *i* (e.g., raw material consumption, utility consumption, etc.) per the set function unit; GWP_i is the life cycle inventory parameter of component *i*; $E_{CO_2}^{D/I}$ is the direct/indirect CO₂ emission index; $F_{CO_2}^{D/I}$ is the direct/indirect CO₂ emission rate; F_p is the production rate; $E_{CO_2}^C$ is the CO₂ consumption index; $F_{CO_2}^C$ is the CO₂ consumption rate; $E_{CO_2}^N$ is the net CO₂ emission index. Using the $E_{CO_2}^N$ value, the CO₂ emission effect of the CO₂ utilization process is evaluated. The used life cycle inventory parameter in this study is summarized in Table S4.

Data set	Global warming impact (GWI)	Unit		
Electricity				
Grid mix*	0.395	ton CO ₂ -eq./MWh		
LP steam	82.8948	kg CO ₂ -eq./GJ		
Cooling water	Neglected	-		
Hydrogen**	7.00^{9}	ton CO ₂ -eq./ton		
CO ₂ (captured)	-0 .71 ⁵	ton CO ₂ -eq./ton		

Table S5. Life cycle inventory parameters used in this study

*Electricity mix European Environment Agency (EEA).

**Considered compression process. 12.00 ton CO₂-eq. per ton H₂ via steam methane reforming.

7. Techno-economic analysis method

Techno-economic analysis (TEA) is a method to evaluate and analyze the techno-economic feasibility of a give process. Inside battery limits (ISBL) and outside battery limits (OSBL) method is used for the present analyses.¹⁰ The annual operating cost is calculated as the sum of fixed and variable operating cost. The fixed capital investment (FCI) is estimated from the total equipment installation cost. All equipment installation costs are converted to 2019 prices in USD by considering the chemical engineering plant cost indexes (CEPCI). Capital expenditure (CAPEX) is described as following equations.

$$IEC = F_{I} \times FOB$$

$$\land * \text{ MERGEFORMAT (14)}$$

$$ISBL = IEC \times F_{ISBL}$$

$$\land * \text{ MERGEFORMAT (15)}$$

$$FCI = ISBL \times (1 + D \& E + X)$$

$$\land * \text{ MERGEFORMAT (16)}$$

$$OSBL = ISBL \times OS$$

$$\land * \text{ MERGEFORMAT (17)}$$

$$TPC = FCI + OSBL + WC$$

$$\land * \text{ MERGEFORMAT (18)}$$

where *IEC* is the installation cost; F_I is the installation factor; *FOB* is the equipment purchase cost; F_{ISBL} is the ISBL factor, which is calculated as the sum of piping, instrumentation and control, electrical system, civil, structure and building, and lagging and paint; D & E is the design and engineering factor; X is the contingency factor; *OS* is the offsite factor; *WC* is the working capital; *TPC* is the total plant cost (CAPEX).

The estimated CAPEX is converted to annualized investment cost using following equations.

$$AIC = TPC \times CRF \qquad \qquad \land * MERGEFORMAT (19)$$

$$CRF = \frac{i(i+1)^n}{\left((i+1)^n - 1\right)}$$
 * MERGEFORMAT (20)

where AIC is the annualized investment cost; CRF is the capital recovery factor; *i* is the annual discount rate; *n* is operation time of the system.

FOB for all equipment except for electrolyzer and PSA is estimated using literature.¹⁰ The used purchased prices for electrolyzer, utility and raw material in this study is summarized in Table S5.

	Data set	Value	Unit
Electrolyzer	stack cost	11211	USD/kW
Electrolyzer	BoP cost	30311	USD/kW
	Reference cost	1,989,043	USD
PSA unit ¹²	Reference capacity	1,000	m ³ /hr (flowrate)
	Scaling factor	0.7	-
CO ₂ capturi	ng cost	4012	USD/ton CO ₂
Electricity		0.06613	USD/kWh
LP steam		6.087	USD/GJ
Process wat	er	0.156	USD/m ³
O ₂		95 ¹³	USD/ton
H_2		8,000 ¹⁴	USD/ton

Table S6. Purchase prices used in this study

8. Simulation results

Table S7. Simulation results for the CF-ECO₂R process. The simulation is conducted to predict the performance of the CF-ECO₂R process at operating voltages from 1.8 V to 2.3 V.

Operating voltage (V)	$j_{CO} (mAcm^{-2})$	j_{H_2} ($mAcm^{-2}$)	FE_{co} (%)	CO ₂ conversion (%)		
		matem)				
1.8	14.3	0.5	92.6	4.7		
1.9	30.0	1.0	93.6	9.5		
2.0	62.7	2.0	97.1	18.9		
2.1	131.1	4.1	95.5	35.5		
2.2	223.7	8.2	92.9	55.6		
2.3	249.5	16.4	88.6	62.9		

9. References

- 1. X. Lu, D. Y. C. Leung, H. Z. Wang and J. Xuan, *Appl Energ*, 2018, 227, 525-532.
- 2. H. Z. Wang, D. Y. C. Leung and J. Xuan, *Appl Energ*, 2013, **102**, 1057-1062.
- Y. Kotb, S. E. K. Fateen, J. Albo and I. Ismail, *J Electrochem Soc*, 2017, 164, E391-E400.
- C. Georgopoulou, S. Jain, A. Agarwal, E. Rode, G. Dimopoulos, N. Sridhar and N. Kakalis, *Comput Chem Eng*, 2016, 93, 160-170.
- 5. A. Sternberg, C. M. Jens and A. Bardow, *Green Chem*, 2017, **19**, 2244-2259.
- 6. R. Meys, A. Katelhon and A. Bardow, *Green Chem*, 2019, **21**, 3334-3342.
- 7. J. Lee, K. H. Ryu, H. Y. Ha, K. D. Jung and J. H. Lee, *J Co2 Util*, 2020, **37**, 113-121.
- 8. W. Chung, K. Roh and J. H. Lee, Int J Greenh Gas Con, 2018, 74, 259-270.
- 9. E. Cetinkaya, I. Dincer and G. F. Naterer, *Int J Hydrogen Energ*, 2012, **37**, 2071-2080.
- 10. G. Towler and R. Sinnott, *Chemical engineering design: principles, practice and economics of plant and process design*, Elsevier, 2012.
- A. T. Mayyas, M. F. Ruth, B. S. Pivovar, G. Bender and K. B. Wipke, *Manufacturing Cost Analysis for Proton Exchange Membrane Water Electrolyzers*, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2019.
- 12. M. Jouny, W. Luc and F. Jiao, *Ind Eng Chem Res*, 2018, **57**, 2165-2177.
- C. Hank, S. Gelpke, A. Schnabl, R. J. White, J. Full, N. Wiebe, T. Smolinka, A. Schaadt, H.-M. Henning and C. Hebling, *Sustain Energ Fuels*, 2018, 2, 1244-1261.
- S. Kimura and Y.Li, *ERIA Research Project Report FY2018 no.01*, ERIA, 2019, 140-183.