Supporting Information

A metal-free method for facile synthesis of indanones *via* intramolecular hydroacylation of 2-vinylbenzaldehydes

Guoxue He,^{‡a,b,c} Jinyu Ma,^{‡b,c} Jianhui Zhou,^{b,c} Chunpu Li,^{b,c} Hong Liu^{*b,c} and Yu Zhou^{*b,c}

^{*a*}School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.

^bState Key Laboratory of Drug Research, Shanghai Institute of Materia Medica,

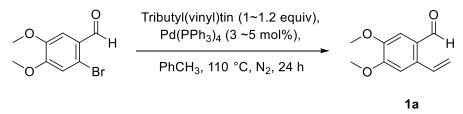
Chinese Academy of Sciences, Shanghai 201203, China.

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China.

[‡]These authors contributed equally to this work.

E-mail: zhouyu@simm.ac.cn; hliu@simm.ac.cn.

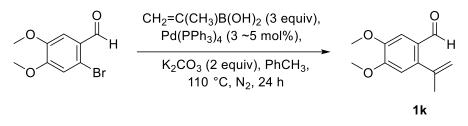
Table of Contents


I. General Experimental Information	S3
II. General Experimental Procedures for the Reaction	S3
III. References	
IV. ¹ H NMR and ¹³ C NMR Spectra	S13

I. General Experimental Information

4,5-dimethoxy-2-vinylbenzaldehyde (**1a**) derivatives are commercially available and synthesized by reference. Metal-free-catalyzed reactions at 100 °C and in the air atmosphere. TLC was performed on silica gel GF₂₅₄ plates (Qingdao Marine Chemical Co., Ltd., China) and was visualized with UV lamp (254 nm). Flash column chromatography was performed on silica gel (200–400 mesh). ¹H NMR spectra were recorded on 400 MHz NMR spectrometer (Bruker). ¹³C NMR spectra were recorded on 100 MHz NMR spectrometer. The ¹H and ¹³C chemical shifts are referenced to signals at δ 0.00 (TMS). ¹H NMR coupling constants (*J*) are reported in Hertz (Hz) and multiplicities are indicated as follows: s (singlet), d (doublet), t (triplet) and m (multiplet). HRMS were performed using EI mode analyzer. All new products were identified through NMR and HRMS.

II. General Experimental Procedures for the Reaction


General Procedure for the Synthesis of 4,5-Dimethoxy-2-vinylbenzaldehyde (1a) Derivatives.

4,5-Dimethoxy-2-vinylbenzaldehyde (**1a**) derivatives are commercially available, and obtained by references.^[1]

A 25 mL round bottom flask, 2-bromo-4,5-dimethoxybenzaldehyde (2 mmol), $Pd(PPh_3)_4$ (3 mol %), tributylvinyltin (2 mmol) in anhydrous PhCH₃ (3 mL) was added and stirred at 110 °C for about 24 h under a nitrogen atmosphere (monitored by TLC). Upon completion, the reaction mixture was cooled to room temperature, filtered with diatomite, washed filter cake with ethyl acetate, then collected filtrate and removal of the solvent under vacuum, and the residue was purified on a silica gel column chromatography (eluent: EtOAc/PE=1:20) to provide the corresponding product **1a** (92%).

General Procedure for the Synthesis of 4,5-Dimethoxy-2-(prop-1-en-2-yl)benzaldehyde (1k).

4,5-Dimethoxy-2-(prop-1-en-2-yl)benzaldehyde (1k) derivatives are commercially available, and obtained by references.^[2]

A 25 mL round bottom flask, 2-bromo-4,5-dimethoxybenzaldehyde (2 mmol), Isopropenylboronic acid (6 mmol), Pd(PPh₃)₄ (3 mol %) in anhydrous PhCH₃ (3 mL) was added and stirred at 110 °C for about 24 h under a nitrogen atmosphere (monitored by TLC). Upon completion, the reaction mixture was cooled to room temperature, filtered with diatomite, washed filter cake with ethyl acetate, then collected filtrate and removal of the solvent under vacuum, and the residue was purified on a silica gel column chromatography (eluent: EtOAc/PE=1:20) to provide the corresponding product **1k** (81%).

4,5-Dimethoxy-2-(prop-1-en-2-yl)benzaldehyde (**1k**). Brown liquid, 334 mg, 81%. ¹H NMR (400 MHz, CDCl₃) δ 10.07 (d, J = 1.3 Hz, ¹H), 7.44 (d, J = 0.9 Hz, 1H), 6.76 (s, 1H), 5.42 (d, J = 1.3 Hz, 1H), 4.93 (s, 1H), 3.95 (dd, J = 11.3, 1.1 Hz, 7H), 2.17 (d, J = 0.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 153.5, 148.4, 143.3, 141.1, 126.6, 119.0, 110.2, 108.6, 56.1, 56.1, 25.4. HRMS (EI-DFS) m/z calcd for C₁₂H₁₄O₃ [M]⁺ 206.0943, found 206.0934.

4,5-dimethoxy-2-(pent-1-en-1-yl)benzaldehyde (**1m**). Brown liquid, 267 mg, 57%. ¹H NMR (400 MHz, CDCl₃) δ 10.25 (s, 1H), 7.36 (s, 1H), 7.05 (d, *J* = 15.6 Hz, 1H), 6.90 (s, 1H), 6.08 (dt, *J* = 15.5, 6.9 Hz, 1H), 3.98 (s, 3H), 3.93 (s, 3H), 2.27 (dd, *J* = 7.4, 1.2 Hz, 2H), 1.54 (dt, *J* = 14.6, 7.3 Hz, 2H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.1, 153.8, 148.4, 136.9, 136.7, 126.1, 124.8, 109.8, 109.2, 56.1, 56.1, 35.4, 22.4, 13.8. HRMS (EI-DFS) *m*/*z* calcd for C₁₄H₁₈O₃ [M]⁺ 234.1256, found 234.1249.

2-(2-cyclopropylvinyl)-4,5-dimethoxybenzaldehyde (**1o**). Brown liquid, 297 mg, 64%. ¹H NMR (400 MHz, CDCl₃) δ 10.25 (s, 1H), 7.33 (s, 1H), 7.17 (d, *J* = 15.5 Hz, 1H), 6.86 (s, 1H), 5.58 (dd, *J* = 15.5, 9.1 Hz, 1H), 3.96 (s, 3H), 3.92 (d, *J* = 2.5 Hz, 4H), 1.72~1.60 (m, 1H), 0.94~0.84 (m, 2H), 0.61~0.53 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 190.0, 153.7, 148.2, 140.4, 136.6, 125.6, 122.0, 110.0, 108.6, 56.0, 56.0, 15.1, 7.6. HRMS (EI-DFS) *m/z* calcd for C₁₄H₁₈O₃ [M]⁺ 232.1099, found 232.1101. The synthesis of 2-(2-(1-benzylpiperidin-4-yl)vinyl)-4,5-dimethoxybenzaldehyde (**1t**).

A 25 mL round bottom flask, 2-bromo-4,5-dimethoxybenzaldehyde (2 mmol), 4-allyl-1-benzylpiperidine (2 mmol), Pd(OAc)₂ (5 mol %), tri-*o*-tolylphosphane (10 mol %) in triethylamine (5 mL) was added and stirred at 125 °C for about 12 h under a nitrogen atmosphere (monitored by TLC). Upon completion, the reaction mixture was cooled to room temperature, water was added and extracted with ethyl acetate (10 mLx2), the combined organic layers were washed with brine, dried over MgSO₄, concentrated under reduced pressure, and the residue was purified on a silica gel column chromatography (eluent: EtOAc/PE=1:4) to provide the corresponding product **1t** (44%).

2-(2-(1-benzylpiperidin-4-yl)vinyl)-4,5-dimethoxybenzaldehyde (**1t**). Brown liquid, 333 mg, 44%. ¹H NMR (600 MHz, CDCl₃) δ 10.20 (s, 1H), 7.33 (d, J = 5.2 Hz, 5H), 7.31~7.28 (m, 1H), 7.03 (d, J = 15.6 Hz, 1H), 6.86 (s, 1H), 6.04~5.96 (m, 1H), 3.96 (s, 3H), 3.92 (s, 3H), 3.71 (s, 2H), 3.09 (d, J = 11.1 Hz, 2H), 2.23 (dd, J = 10.5, 4.7 Hz, 2H), 2.15 (t, J = 10.7 Hz, 2H), 1.75 (d, J = 9.6 Hz, 2H), 1.49 (d, J = 4.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 190.1, 153.8, 148.5, 136.5, 135.2, 134.1, 130.1, 128.4, 127.8, 126.5, 126.1, 110.1, 109.2, 62.1, 56.1, 56.0, 52.8, 39.9, 35.5, 30.9. HRMS (EI-DFS) *m/z* calcd for C₂₄H₂₉NO₃ [M] ⁺ 379.2147, found 379.2151.

GeneralProcedurefortheSynthesisof5,6-Dimethoxy-2,3-dihydro-1H-inden-1-one (2a).

A 25 mL round bottom flask, 4,5-dimethoxy-2-vinylbenzaldehyde (**1a**) (58 mg, 0.3 mmol), L-proline (7 mg, 20 mol %) in glacial acetic acid (3 mL) was added and stirred at 120 °C for about 24 h under an air atmosphere (monitored by TLC). Upon completion, the reaction mixture was cooled to room temperature and removal of the solvent under vacuum, the resulting mixture was extracted with ethyl acetate (10 mLx2), the combined organic layers were washed with saturated sodium bicarbonate, brine, dried over MgSO₄, concentrated under reduced pressure, and the residue was purified on a silica gel column chromatography (eluent: EtOAc/PE=1:6) to provide the corresponding product **2a** (52 mg, 90%).

5,6-Dimethoxy-2,3-dihydro-1*H*-inden-1-one (**2a**). Brown solid, 52 mg, 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (s, 1H), 6.90 (s, 1H), 3.97 (s, 3H), 3.91 (s, 3H), 3.10~2.98 (m, 2H), 2.71~2.60 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 205.7, 155.4, 150.4, 149.4, 129.9, 107.5, 104.1, 56.1, 56.1, 36.5, 25.6. HRMS (EI-DFS) *m/z* calcd for C₁₁H₁₂O₃ [M]⁺ 192.0786, found 192.0779.

6-Hydroxy-5-methoxy-2,3-dihydro-1*H*-inden-1-one (**2b**). Brown liquid, 44 mg, 83%. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (s, 1H), 6.88 (s, 1H), 5.73 (s, 1H), 3.99 (s, 3H), 3.07~3.01 (m, 2H), 2.68~2.63 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 205.8, 152.8, 149.3, 145.7, 130.6, 107.9, 107.1, 56.2, 36.5, 25.6. HRMS (EI-DFS) m/z calcd for C₁₀H₈O₃ [M]⁺ 176.0473, found 176.0469.

6,7-Dihydro-5*H*-indeno[5,6-*d*][1,3]dioxol-5-one (**2c**). Brown solid, 43 mg, 81%. ¹H NMR (400 MHz, CDCl₃) δ 7.10 (s, 1H), 6.83 (s, 1H), 6.07 (s, 2H), 3.05~3.00 (m, 2H), 2.71~2.65 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 204.9, 154.2, 152.7, 148.3, 131.7, 105.7, 102.3, 102.2, 36.7, 25.8. HRMS (EI-DFS) *m*/*z* calcd for C₁₀H₈O₃ [M]⁺ 176.0473, found 176.0470.

2,3-Dihydro-1*H*-cyclopenta[*a*]naphthalen-1-one (**2d**). Brown solid, 47 mg, 85%. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.9 Hz, 1H), 7.96 (d, *J* = 7.9 Hz, 1H), 7.79 (dd, *J* = 26.7, 8.5 Hz, 2H), 7.71~7.61 (m, 2H), 3.51~3.36 (m, 2H), 2.86 (dd, *J* = 8.1, 2.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 206.9, 156.5, 136.6, 134.5, 130.6, 129.2, 128.9, 128.5, 127.1, 124.4, 119.5, 36.2, 24.4. HRMS (EI-DFS) *m/z* calcd for C₁₃H₁₀O [M]⁺ 182.0732, found 182.0725.

6-Methoxy-2,3-dihydro-1*H*-inden-1-one (**2e**). Brown solid, 42 mg, 87%. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (dd, J = 7.0, 2.0 Hz, 1H), 7.19 (dd, J = 7.3, 2.3 Hz, 2H), 3.84 (s, 3H), 3.12~3.02 (m, 2H), 2.77~2.67 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 207.2, 159.4, 148.0, 138.2, 127.4, 124.1, 104.9, 55.6, 37.0, 25.1. HRMS (EI-DFS) *m*/*z* calcd for C₁₀H₁₀O₂ [M]⁺ 162.0681, found 162.0668.

6-Hydroxy-2,3-dihydro-1*H*-inden-1-one (**2f**). Brown liquid, 36 mg, 82%. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.2 Hz, 1H), 7.22 (d, J = 2.4 Hz, 1H), 7.16 (dd, J = 8.2, 2.5 Hz, 1H), 6.47 (s, 1H), 3.09~3.03 (m, 2H), 2.72 (dd, J = 6.5, 4.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 207.8, 155.8, 147.9, 138.2, 127.6, 123.6, 108.7, 37.1, 25.2. HRMS (EI-DFS) *m/z* calcd for C₉H₈O₂ [M]⁺ 148.0524, found 148.0518.

5-Methyl-2,3-dihydro-1*H*-inden-1-one (**2g**). Brown solid, 33 mg, 75%. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.9 Hz, 1H), 7.28 (s, 1H), 7.18 (d, *J* = 8.1 Hz, 1H),

3.09 (s, 2H), 2.71~2.64 (m, 2H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.7, 155.8, 151.2, 146.0, 128.6, 127.0, 123.6, 36.4, 25.7, 22.1. HRMS (EI-DFS) *m*/*z* calcd for C₁₀H₁₀O [M]⁺ 146.0732, found 146.0726.

5-Hydroxy-2,3-dihydro-1*H*-inden-1-one (**2h**). Brown liquid, 37 mg, 84%. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.1 Hz, 1H), 7.23 (s, 1H), 7.17 (dd, *J* = 7.8, 2.1 Hz, 1H), 3.10~3.03 (m, 2H), 2.75~2.69 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 207.9, 155.7, 147.7, 138.2, 127.6, 123.6, 108.7, 37.1, 25.2. HRMS (EI-DFS) *m*/*z* calcd for C₉H₈O₂ [M]⁺ 148.0524, found 148.0522.

4-Methyl-2,3-dihydro-1*H*-inden-1-one (**2i**). Brown solid, 27 mg, 61%. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.6 Hz, 1H), 7.41 (d, *J* = 7.3 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 1H), 3.08~3.00 (m, 2H), 2.74~2.67 (m, 2H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 207.6, 154.2, 136.9, 135.9, 135.1, 127.5, 121.1, 36.2, 24.9, 17.8. HRMS (EI-DFS) *m*/*z* calcd for C₁₀H₁₀O [M]⁺ 146.0732, found 146.0726.

2,3-Dihydro-1*H*-inden-1-one (**2j**). Brown solid, 18 mg, 45%.¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.7 Hz, 1H), 7.62~7.56 (m, 1H), 7.48 (d, J = 7.7 Hz, 1H), 7.40~7.35 (m, 1H), 3.17~3.13 (m, 2H), 2.72~2.67 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 207.1, 155.2, 137.1, 134.6, 127.3, 126.7, 123.7, 36.2, 25.8. HRMS (EI-DFS) m/z calcd for C₉H₈O [M]⁺ 132.0575, found 132.0570.

5,6-Dimethoxy-3-methyl-2,3-dihydro-1*H*-inden-1-one (**2k**). Brown solid, 34 mg, 56%. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (s, 1H), 6.89 (s, 1H), 3.99 (s, 3H), 3.91 (s, 3H), 3.35 (d, *J* = 6.3 Hz, 1H), 2.93 (dd, *J* = 18.8, 7.3 Hz, 1H), 2.26 (d, *J* = 18.8 Hz, 1H), 1.27 (d, *J* = 12.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.0, 155.6, 155.3, 149.5, 106.1, 104.0, 56.2, 56.1, 45.5, 32.6, 21.5. HRMS (EI-DFS) *m/z* calcd for C₁₂H₁₄O₃ [M]⁺ 206.0943, found 206.0939.

5,6-Dimethoxy-3-phenyl-2,3-dihydro-1*H*-inden-1-one (**2l**). Brown solid, 52 mg, 65%. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 6.5 Hz, 2H), 7.27~7.21 (m, 2H), 7.12 (d, *J* = 6.0 Hz, 2H), 6.64 (s, 1H), 4.51~4.45 (m, 1H), 3.93 (s, 3H), 3.84 (s, 3H), 3.21 (dd, *J* = 19.0, 7.5 Hz, 1H), 2.63 (dd, *J* = 19.0, 3.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 204.6, 155.8, 153.1, 149.9, 143.9, 129.9, 128.9, 127.6, 127.0, 107.5, 103.7, 56.2, 56.1, 47.2, 44.2. HRMS (EI-DFS) *m*/*z* calcd for C₁₇H₁₆O₃ [M]⁺ 268.1099, found 268.1097.

5,6-Dimethoxy-2-propyl-2,3-dihydro-1*H*-inden-1-one (**2m**). Brown solid, 53 mg, 75%. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (s, 1H), 6.86 (s, 1H), 3.95 (s, 3H), 3.90 (s,

3H), 3.22 (dd, J = 16.8, 7.4 Hz, 1H), 2.71 (dd, J = 16.9, 3.2 Hz, 1H), 2.68~2.58 (m, 1H), 1.91 (t, J = 9.8 Hz, 1H), 1.49~1.38 (m, 3H), 0.95 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 207.9, 155.4, 149.4, 149.0, 129.6, 107.4, 104.3, 56.2, 56.1, 47.6, 33.9, 32.6, 20.7, 14.1. HRMS (EI-DFS) *m*/*z* calcd for C₁₄H₁₈O₃ [M]⁺ 234.1256, found 234.1250.

2-Butyl-5,6-dimethoxy-2,3-dihydro-1*H*-inden-1-one (**2n**). Brown solid, 53 mg, 71%. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (s, 1H), 6.85 (s, 1H), 3.94 (d, *J* = 0.8 Hz, 3H), 3.88 (d, *J* = 0.8 Hz, 3H), 3.20 (dd, *J* = 16.9, 7.4 Hz, 1H), 2.70 (dd, *J* = 16.9, 3.2 Hz, 1H), 2.62 (dt, *J* = 12.1, 3.9 Hz, 1H), 1.97~1.87 (m, 1H), 1.41~1.30 (m, 5H), 0.89 (t, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 207.9, 155.4, 149.4, 149.1, 129.6, 107.4, 104.3, 56.2, 56.1, 47.7, 32.6, 31.4, 29.6, 22.8, 14.0. HRMS (EI-DFS) *m/z* calcd for C₁₅H₂₀O₃ [M]⁺ 248.1412, found 248.1405.

2-Cyclopropyl-5,6-dimethoxy-2,3-dihydro-1*H*-inden-1-one (**20**). Brown solid, 56 mg, 80%. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (s, 1H), 6.85 (s, 1H), 3.95 (s, 3H), 3.90 (s, 3H), 3.16 (dd, *J* = 17.1, 7.6 Hz, 1H), 2.71 (dd, *J* = 17.1, 3.2 Hz, 1H), 2.30 (td, *J* = 7.8, 3.3 Hz, 1H), 1.03~0.93 (m, 1H), 0.65~0.56 (m, 1H), 0.54~0.38 (m, 2H), 0.23 (dt, *J* = 14.1, 4.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 206.5, 155.1, 149.0, 148.5, 129.1, 107.0, 104.1, 55.8, 55.7, 50.0, 31.5, 12.6, 2.9, 1.1. HRMS (EI-DFS) *m*/*z* calcd for C₁₄H₁₆O₃ [M]⁺ 232.1099, found 232.1092.

4-Hydroxy-2-methyl-2,3-dihydro-1*H*-inden-1-one (**2r**). Brown solid, 20 mg, 42%. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 7.5 Hz, 1H), 7.30~7.25 (m, 1H), 7.03 (dd, *J* = 7.8, 0.7 Hz, 1H), 3.35 (dd, *J* = 17.0, 7.8 Hz, 1H), 2.79~2.71 (m, 1H), 2.64 (dd, *J* = 17.0, 3.7 Hz, 1H), 1.34 (d, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 209.6, 153.3, 139.7, 138.2, 129.0, 120.2, 116.3, 42.0, 31.1, 16.4. HRMS (EI-DFS) *m*/*z* calcd for C₁₀H₁₀O₂ [M]⁺ 162.0681, found 162.0667.

5-Hydroxy-3,4-dihydronaphthalen-1(2*H*)-one (**2s**). Brown solid, 19 mg, 40%. ¹H NMR (400 MHz, CDCl₃) δ 7.71~7.62 (m, 1H), 7.18 (t, *J* = 7.9 Hz, 1H), 6.98 (dd, *J* = 7.9, 1.1 Hz, 1H), 2.90 (t, *J* = 6.2 Hz, 2H), 2.69~2.61 (m, 2H), 2.15 (dt, *J* = 12.8, 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 153.0, 134.0, 131.0, 126.8, 119.6, 119.5, 38.8, 22.7, 22.5. HRMS (EI-DFS) *m*/*z* calcd for C₁₀H₁₀O₂ [M]⁺ 162.0681, found 162.0671.

Donepezil (2t). White solid, 87 mg, 77%. ¹H NMR (500 MHz, CDCl3) δ 7.36~7.30 (m, 4H), 7.26~7.22 (m, 1H), 7.16 (s, 1H), 6.85 (s, 1H), 3.95 (s, 3H), 3.90 (s,

3H), 3.51 (s, 2H), 3.23 (dd, J = 17.5, 8.1 Hz, 1H), 2.90 (t, J = 9.9 Hz, 2H), 2.75~2.66 (m, 2H), 1.98 (tdd, J = 11.6, 5.6, 2.6 Hz, 2H), 1.94~1.88 (m, 1H), 1.77~1.70 (m, 1H), 1.69~1.63 (m, 1H), 1.55~1.45 (m, 1H), 1.35 (dddd, J = 15.8, 13.5, 11.1, 4.7 Hz, 3H). 13C NMR (125 MHz, CDCl₃) δ 207.8, 155.5, 149.5, 148.7, 138.4, 129.3, 129.2, 128.1, 126.9, 107.4, 104.4, 63.4, 56.2, 56.1, 53.8, 45.5, 38.7, 34.4, 33.4, 33.0, 31.8. HRMS (EI-DFS) *m*/*z* calcd for C₂₄H₂₉NO₃ [M]⁺ 379.2147, found 379.2141.

General Procedure for the Synthesis of Deuterium Containing Compound (D1-2a).

A 25 mL round bottom flask, 4,5-dimethoxy-2-vinylbenzaldehyde (**1a**) (58 mg, 0.3 mmol), L-proline (7 mg, 20 mol %) in CD₃CO₂D (3 mL) was added and stirred at 120 °C for about 24 h under an air atmosphere (monitored by TLC). Upon completion, the reaction mixture was cooled to room temperature and removal of the solvent under vacuum, the resulting mixture was extracted with ethyl acetate (10 mLx2), the combined organic layers were washed with saturated sodium bicarbonate, brine, dried over MgSO₄, concentrated under reduced pressure. and the residue was purified on a silica gel column chromatography (eluent: EtOAc/PE=1:6) to provide the corresponding product **D1-2a** (51 mg, 88%).

¹H NMR (400 MHz, CDCl₃) δ 7.14 (s, 1H), 6.86 (s, 1H), 3.94 (s, 3H), 3.87 (s, 3H), 3.01 (s, 2H), 2.62 (s, 1H).

General Procedure for the Synthesis of Deuterium Containing Compound (D-1j and D-1a).

A 25 mL dry round bottom three-necked flask, 1-bromo-2-vinylbenzene (182 mg, 2 mmol), dry THF (8 mL) and n-BuLi (1.6 M, 2.5 mL, 4 mmol) added slowly through a syringe, stirred at -78 $^{\circ}$ C for about 0.5 h under a nitrogen atmosphere, then DMF-*d*7 (0.6 mL, 8 mmol) added slowly with syringe stirred at -78 $^{\circ}$ C for about 0.5 h. Added NH₄Cl saturated solution (4 mL), the resulting mixture was extracted with ethyl acetate (10 mLx3), the combined organic layers were washed with brine, dried over MgSO₄, concentrated under reduced pressure. and the residue was purified on a silica gel column chromatography (eluent: EtOAc/PE=1:20) to provide the corresponding product **D-1j** (228 mg, 86%).

¹H NMR (400 MHz, CDCl₃) δ 7.88~7.80 (m, 1H), 7.60~7.49 (m, 3H), 7.47~7.40 (m, 1H), 5.70 (d, *J* = 17.4 Hz, 1H), 5.52 (d, *J* = 11.0 Hz, 1H).

For **D-1a**: ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 17.3, 11.0 Hz, 1H), 7.35 (s, 1H), 6.96 (s, 1H), 5.63 (d, J = 17.3 Hz, 1H), 5.48 (d, J = 11.0 Hz, 1H), 3.97 (s, 3H), 3.93 (s, 3H).

General Procedure for the Synthesis of Deuterium Containing Compound (D-2j and D2-2a).

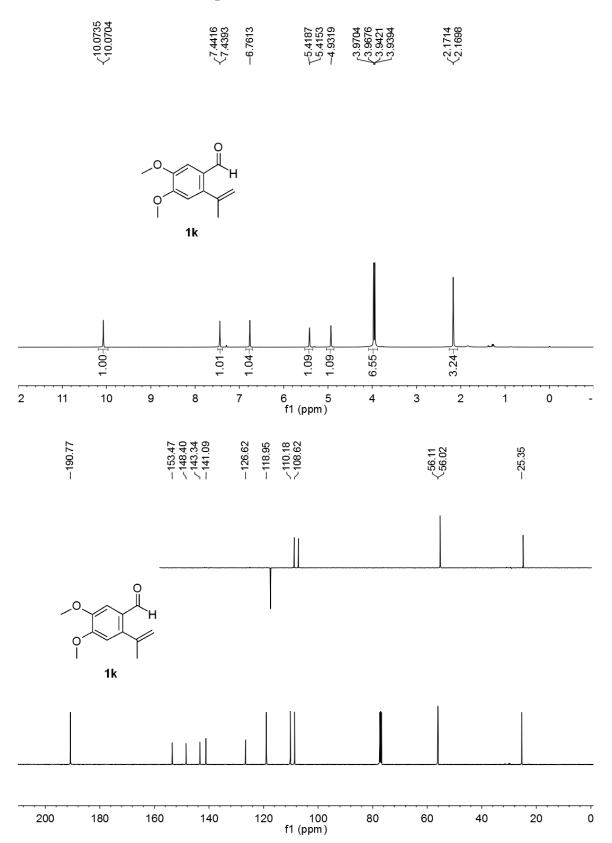
A 25 mL round bottom flask, **D-1j** (26 mg, 0.2 mmol), L-proline (5 mg, 20 mol %) in glacial acetic acid (3 mL) was added and stirred at 120 $^{\circ}$ C for about 24 h under an air atmosphere (monitored by TLC). Upon completion, the reaction mixture was cooled to room temperature and removal of the solvent under vacuum, the resulting mixture was extracted with ethyl acetate (10 mLx2), the combined organic layers were washed with saturated sodium bicarbonate, brine, dried over MgSO₄, concentrated under reduced pressure. and the residue was purified on a silica gel column chromatography (eluent: EtOAc/PE=1:6) to provide the corresponding product **D-2j** (10 mg, 39%).

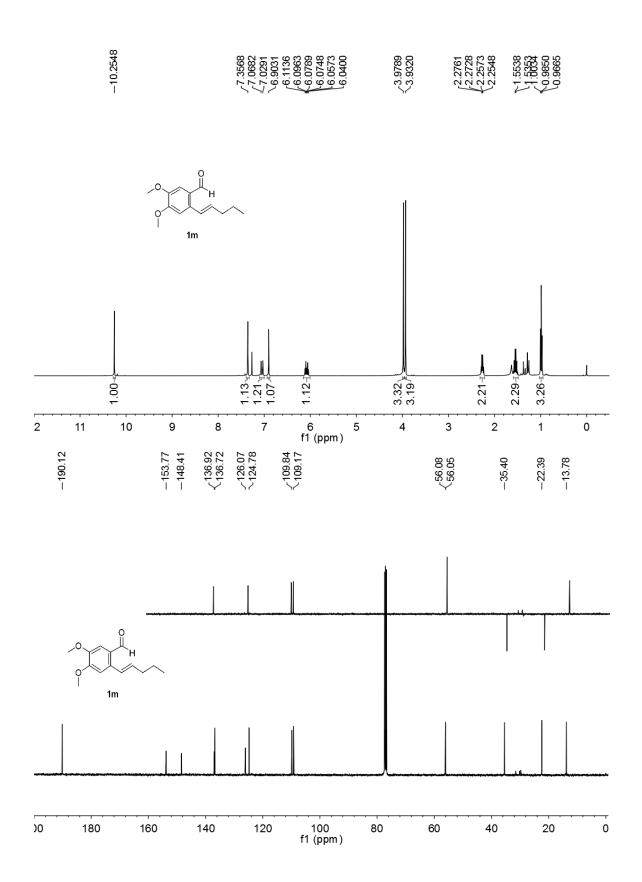
¹H NMR (400 MHz, DMSO) δ 7.70~7.65 (m, 1H), 7.64~7.58 (m, 1H), 7.43 (t, J = 7.2 Hz, 1H), 7.28~7.20 (m, 1H), 3.16~3.06 (m, 2H), 2.66~2.60 (m, 2H).

For **D2-2a**: 32 mg, 85%. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (s, 1H), 6.88 (s, 1H), 3.95 (s, 3H), 3.89 (s, 3H), 3.07~3.00 (m, 2H), 2.71~2.62 (m, 2H).

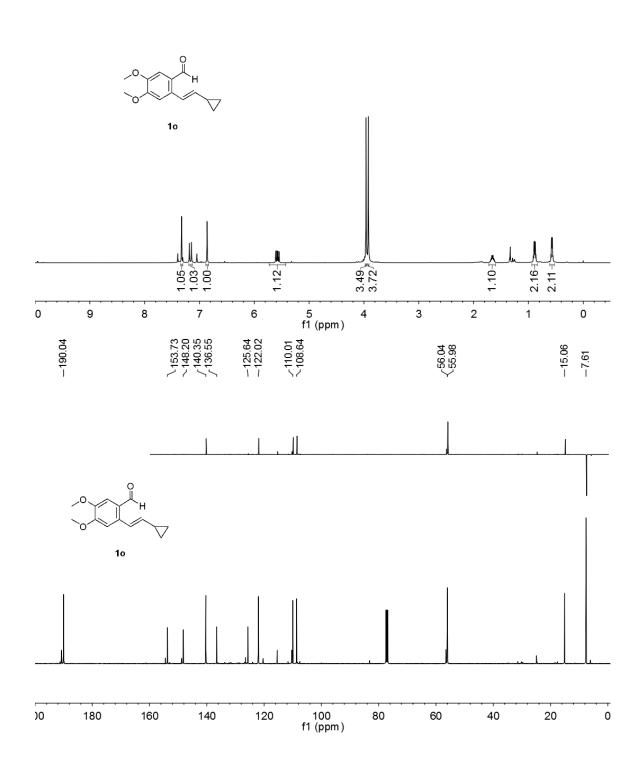
General Procedure for the Synthesis of Intermediate C-2g.

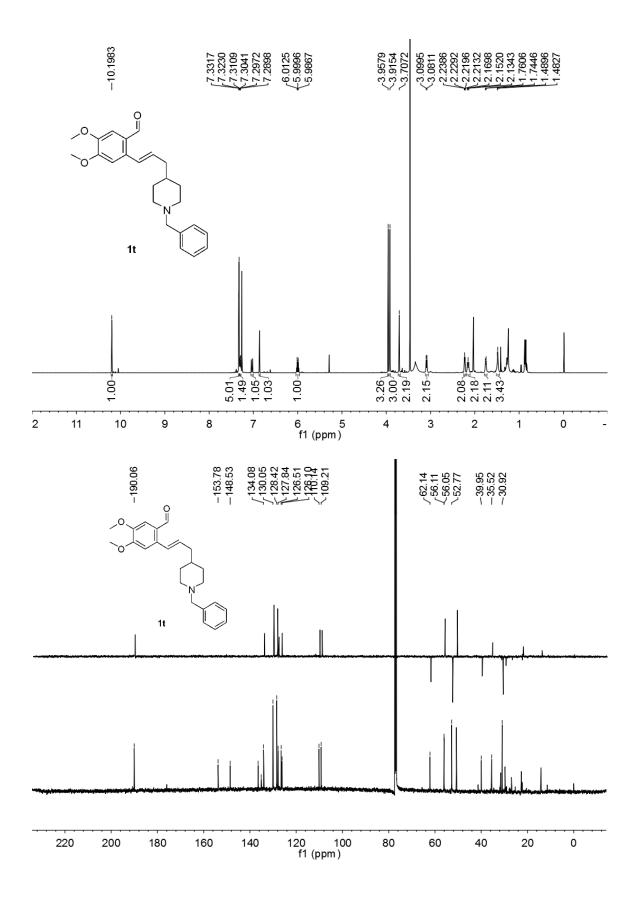
A 25 mL round bottom flask, **1g** (44 mg, 0.3 mmol), tetrahydroisoquinoline (80 mg, 0.6 mmol) in glacial acetic acid (3 mL) was added and stirred at 100 °C for about 12 h under an air atmosphere (monitored by TLC). Upon completion, the reaction mixture was cooled to room temperature and removal of the solvent under vacuum, the resulting mixture was extracted with ethyl acetate (10 mLx2), the combined organic layers were washed with saturated sodium bicarbonate, brine, dried over MgSO₄, concentrated under reduced pressure. and the residue was purified on a silica gel column chromatography (eluent: EtOAc/PE=1:10) to provide the corresponding product **C-2g** (5 mg, 5%).

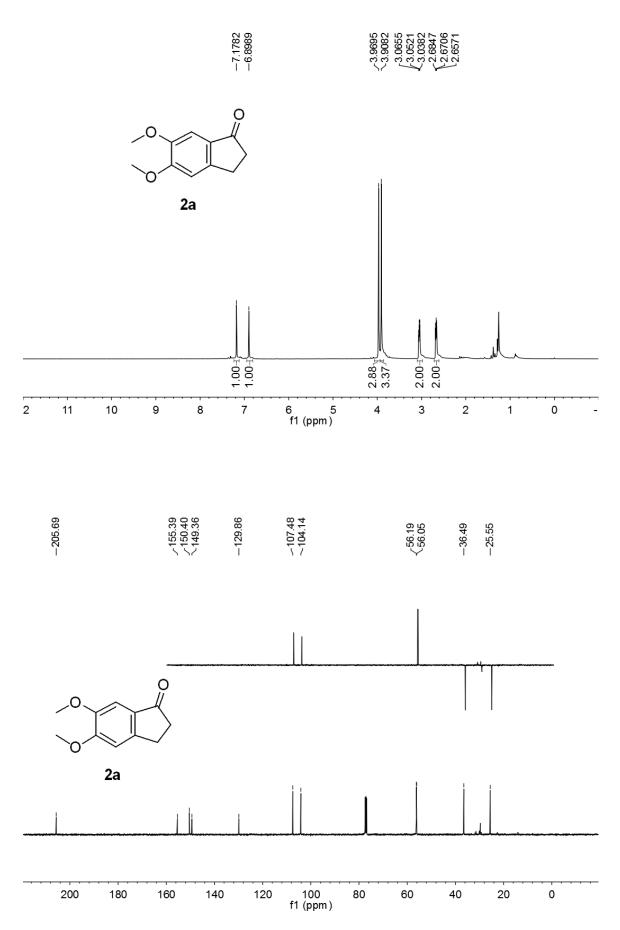

Brown liquid, 5 mg, 5%.¹H NMR (400 MHz, CD₃OD) δ 7.40 (d, *J* = 7.9 Hz, 1H), 7.29~7.18 (m, 2H), 7.13~7.06 (m, 3H), 7.04~6.98 (m, 1H), 6.26 (dd, *J* = 7.1, 4.0 Hz,

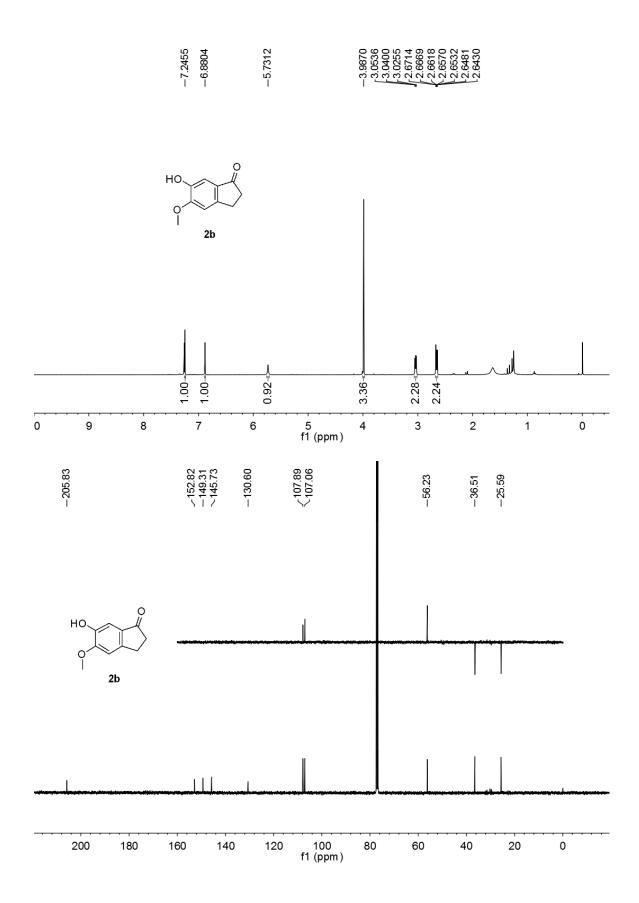

1H), 4.78 (dd, J = 7.5, 4.8 Hz, 1H), 3.75 (dd, J = 65.1, 14.8 Hz, 2H), 2.90 (t, J = 5.7 Hz, 2H), 2.84~2.72 (m, 2H), 2.66 (ddd, J = 14.6, 7.1, 4.7 Hz, 1H), 2.36 (s, 3H), 2.20 (ddd, J = 14.7, 7.8, 4.0 Hz, 1H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CD₃OD) δ 171.6, 142.1, 138.9, 138.6, 133.8, 133.7, 129.9, 128.3, 126.3, 126.2, 125.8, 125.5, 125.2, 76.7, 67.4, 51.3, 45.9, 32.5, 28.5, 20.0, 19.8. HRMS (EI-DFS) *m*/*z* calcd for C₂₁H₂₃NO₂ [M]⁺ 321.1729, found 321.1721.

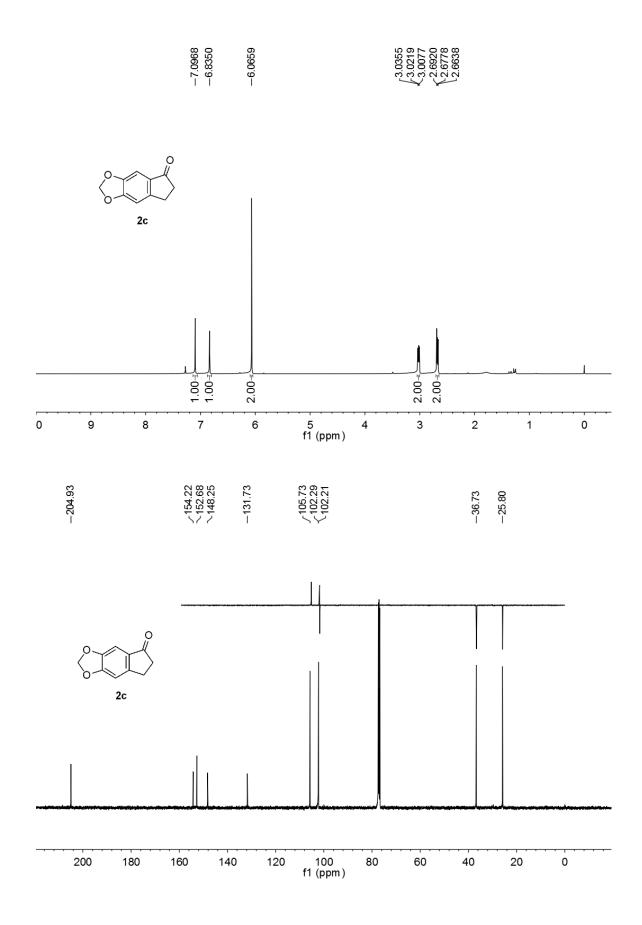
III. References

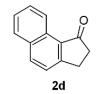

- [1] N. R. Vautravers, D. D. Regent, B. Breit, *Chem. Commun.*, 2011, **47**, 6635.
- [2] E. Peyroux, F. Berthiol, H. Doucet, M. Santelli, *Eur. J. Org. Chem.*, 2004, **2004**, 1075.

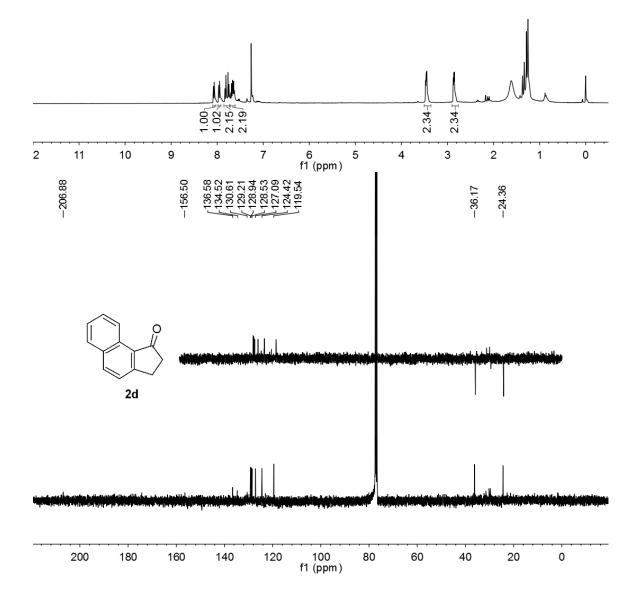

IV. ¹H NMR and ¹³C NMR Spectra

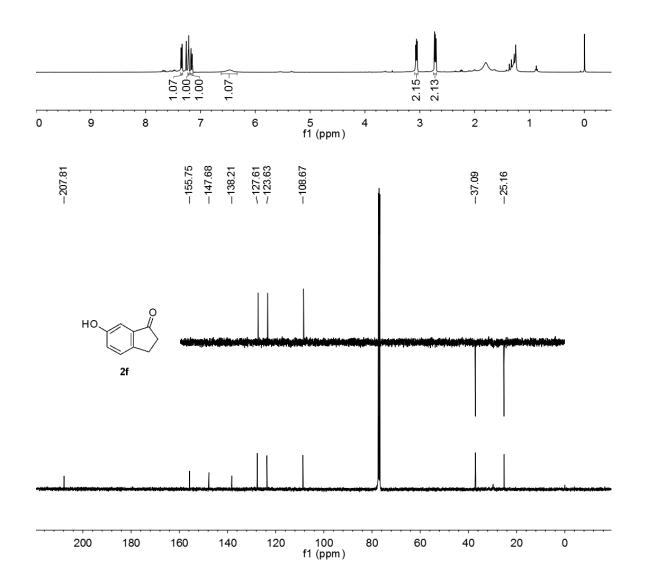


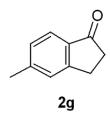


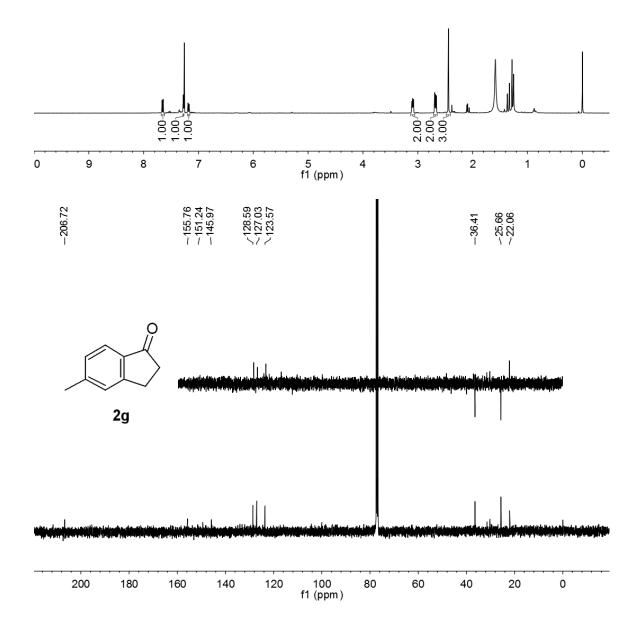

.3253 .1846 .1459 .8602	.6095 .5867 .5707 .5480	.9615 .9205 .9143	.6999 .6784 .6784 .6566 .6566 .6460 .6350 .6350 .6350	8987 8938 8786 8786 8737 5788 5788 5744 5744 5673
<u>~~~</u> 9	က်က်က်	က်ပိုပ်		0 0 0 0 0 0 0 0 0 0
	Int			



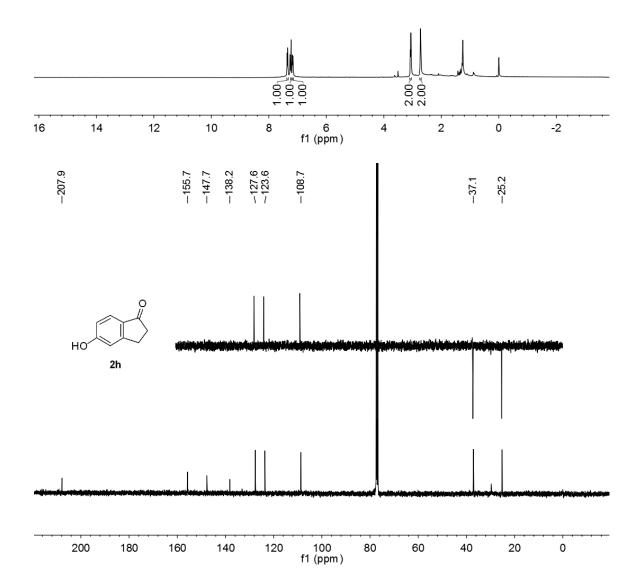


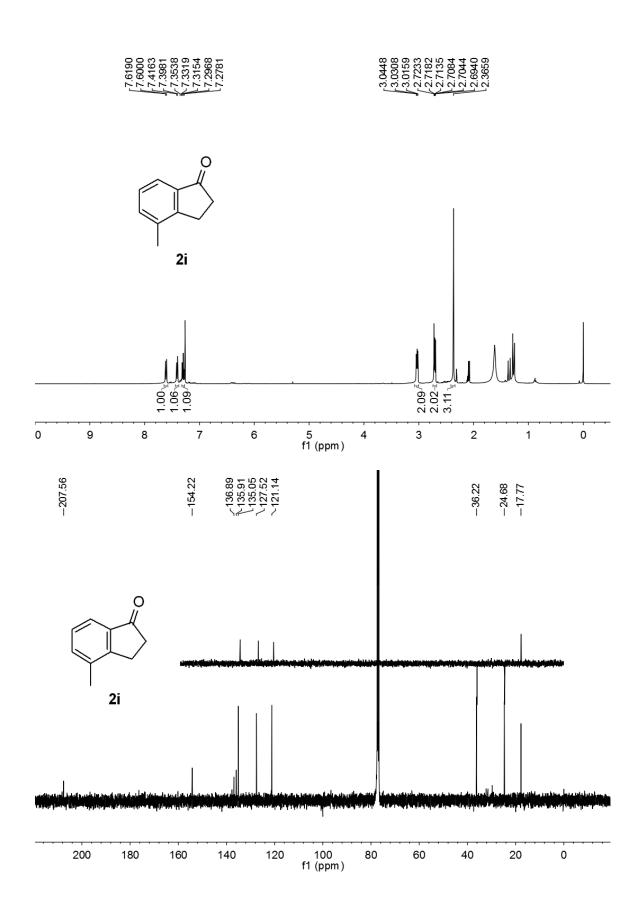


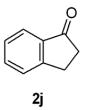

7.3545 7.3339 77.2200 77.1734 7.1528 7.1528 6.4696 73.0747 3.0612 3.0612 -3.0465 -2.7312 -2.7308 -2.7167 -2.7167

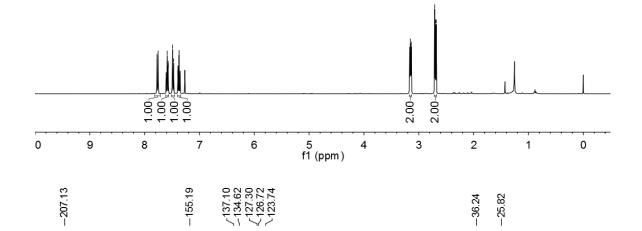


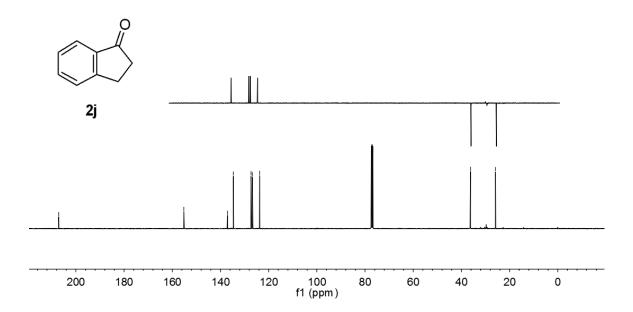
-7.6632 -7.6436 -7.2753 -7.1901 -7.1698

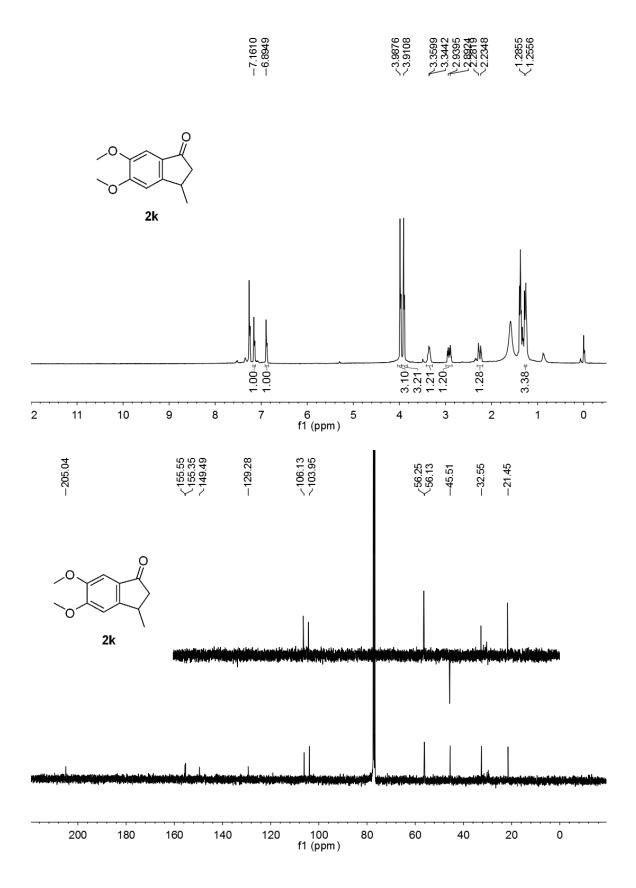

-3.0931 2.6920 -2.6769 -2.6624 -2.4409

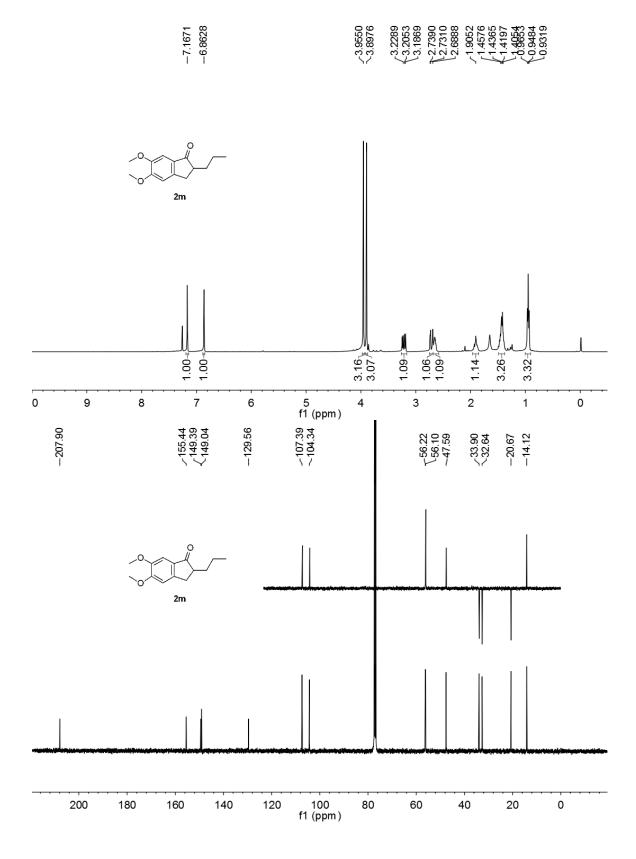


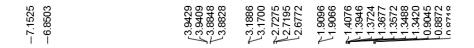

7.3623 7.3420 7.2251 7.1801 7.1598 7.1554 3.0812 3.0677 3.0536 -2.7385 -2.7385 -2.7385 -2.7385

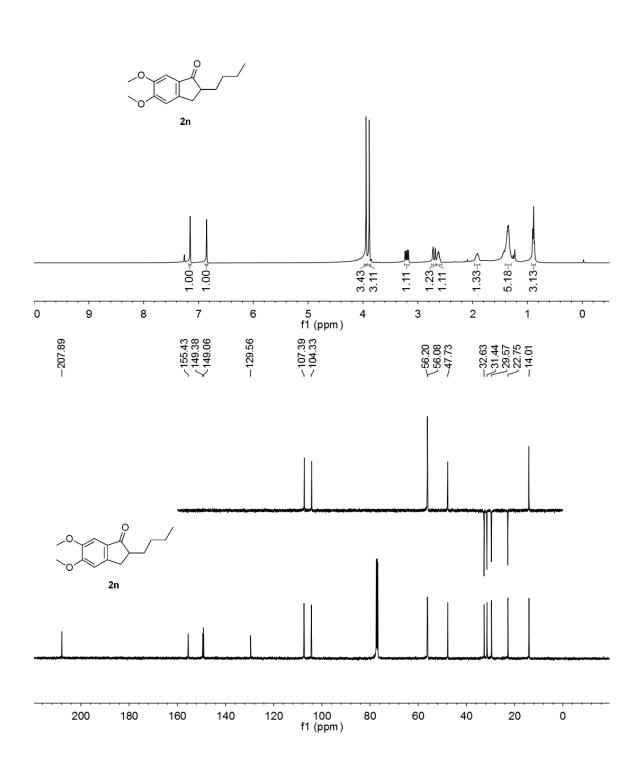


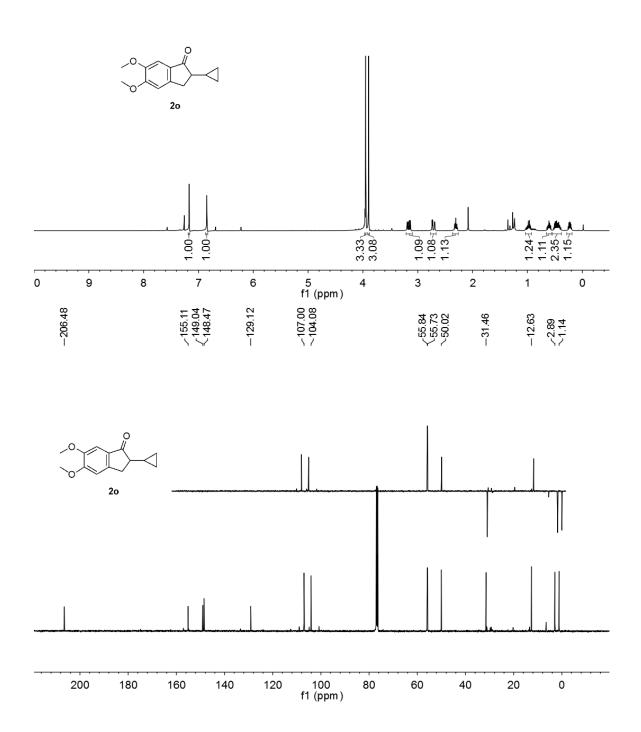


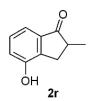


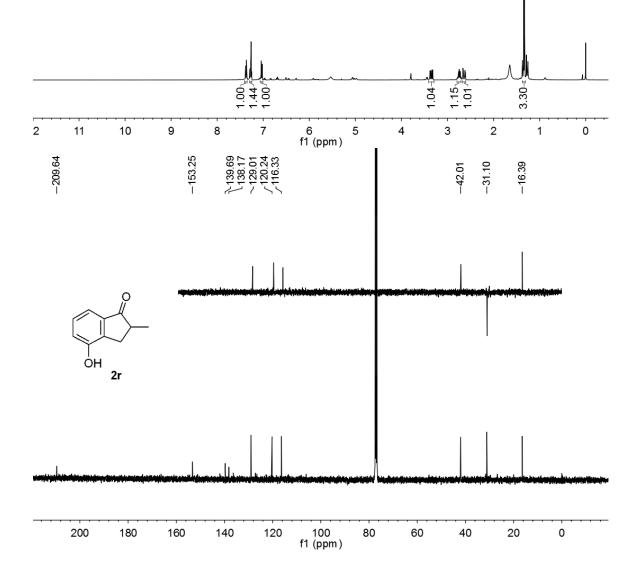


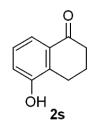


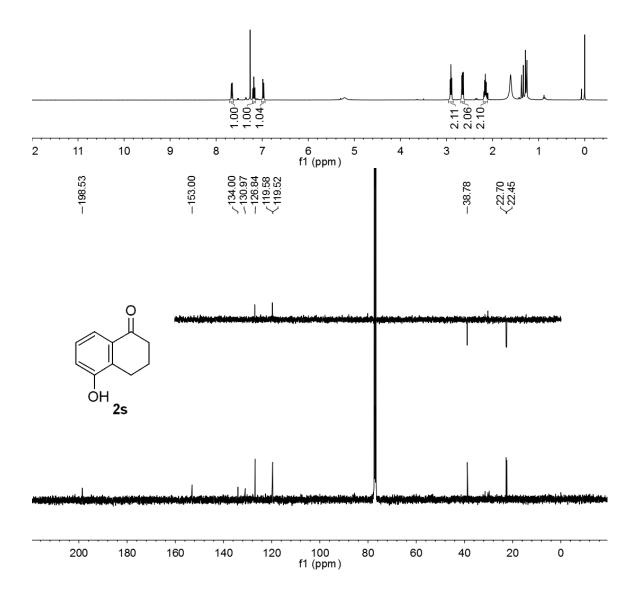


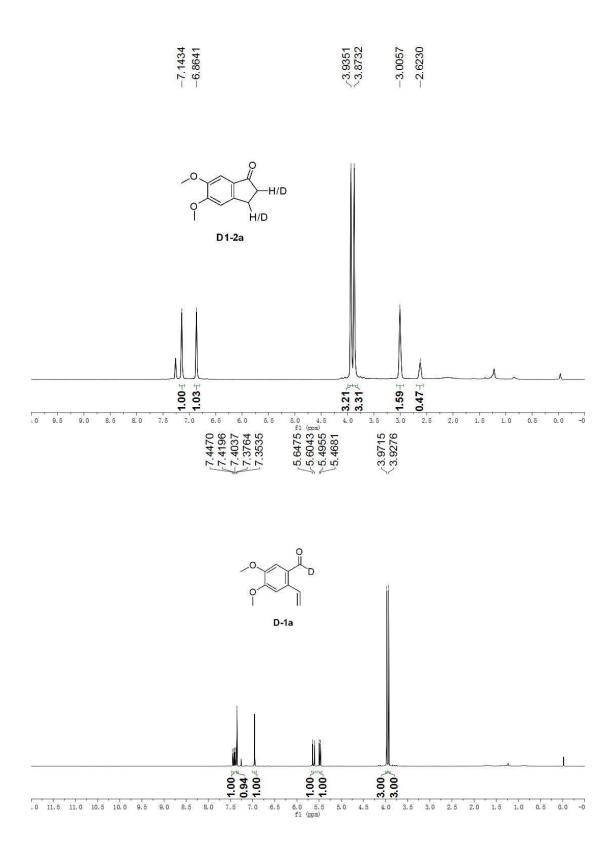


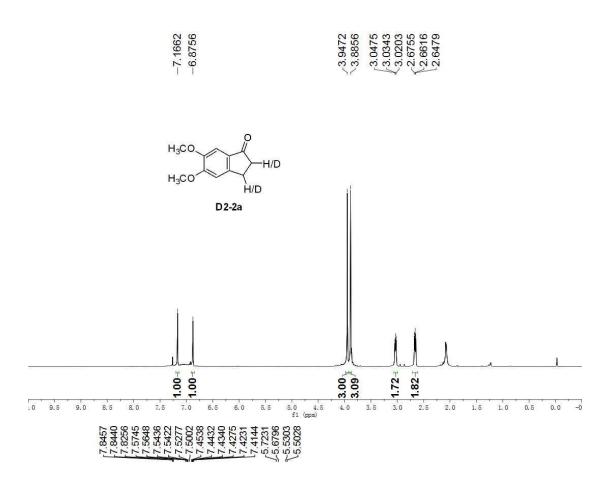





2.7530 2.7436 2.6648 2.6554 2.6554 1.3264 7.3819 7.3631 7.2908 7.2908 7.2908 7.2908 7.2525 7.2623 7.2623 7.2623 7.2623 7.2623 7.2623 7.2623 7.2623 7.2623 7.2623 7.2039 3.3803 3.3609 3.3378 3.3184






 $\begin{bmatrix} 7.6690\\ 7.6517\\ 7.6494\\ 7.7.2024\\ 7.1630\\ 6.9893\\ 6.9666 \end{bmatrix}$

2.9184 7.2.9030 7.2.8876 7.2.8876 7.2.6516 7.2.6516 7.2.1368 7.2.1384

