Supporting information for

One-pot self-assembly synthesis of Ni-doped ordered mesoporous carbons for quantitative hydrogenation of furfural to furfuryl alcohol

Yiwei Tang ^a, Mo Qiu ^a, Jirui Yang ^a, Feng Shen ^a, Xiaoqi Wang ^a, Xinhua Qi ^{b, c*}

^a Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, No. 31, Fukang Road, Nankai District, Tianjin 300191, China

^b College of Environmental Science and Engineering, Nankai University, No. 38, Tongyan Road, Jinnan District, Tianjin 300350, China.

^c National & Local Joint Engineering Research Center of Biomass Resource Utilization, Tianjin 300350, China.

Corresponding Author: Email: qixinhua@nankai.edu.cn (X. Qi); Tel (Fax): 86-22-2350-8807

Total number of pages: 4 Total number of tables: 2 Total number of figures: 1

^{*} Corresponding author. Email: <u>qixinhua@nankai.edu.cn</u> (X. Qi); Tel (Fax): 86-22-2350-8807.

Entry	Catalysts	S_{BET}^{a} (m ² g ⁻¹)	V_M^b (cm ³ g ⁻¹)	W _M ^c (nm)	D _{Ni} ^d (nm)	Ni content ^e (wt%)
1	Ni _{0.5} @OMC-600	538.6	0.46	3.71	7.8	17.8
2	Ni _{0.5} @OMC-700	519.8	0.46	3.72	12.8	22.6
3	Ni _{0.5} @OMC-800	512.2	0.41	3.94	20.4	25.4

Table S1 The properties of Ni0.5@OMC samples of different calcination temperatures.

^a The specific surface area was calculated using BET model.

^b The mesopore volume (V_M) was determined using BJH model.

 $^{\rm c}$ The centered pore diameter (W_M) was calculated with the BJH model

^d Ni particle size was calculated by using the Scherrer equation based on XRD.

^e Obtained by the ICP-OES measurement

Entry	Solvent	E_T (30) ^a (kcal mol ⁻¹)	K ^b ×10 ⁻² (h ⁻¹)
1	H ₂ O	63.1	4.89
2	methanol	55.5	3.83
3	ethanol	51.9	2.34
4	1-propanol	50.7	1.93
5	2-propanol	48.6	1.27

Table S2 The polar parameters of different solvents and FFA, and the reaction rate constants of catalytic hydrogenation of furfural to FFA by $Ni_{0.5}$ @OMC-600 in different solvents

^a E_T(30) is Dimroth–Reichardt's polarity parameter¹. ^b Reaction conditions: 3 mmol of furfural,100

mg Ni_{0.5} OMC-600,10 ml of solvent, 160 °C and 3MPa H_2.

Figure S1. TG analysis of the fresh and recycled catalysts

References

1. C. Reichardt, Angew. Chem. Int. Ed., 1979, 18, 98-110.