Benzoic Acid Resin (BAR): A Heterogeneous Redox Organocatalyst for Continuous Flow Synthesis of Benzoquinones from β-O-4 Lignin Models

Kevin de Aquino Dias, ${ }^{\text {a }}$ Marcus Vinicius Pinto Pereira Junior ${ }^{\text {a,b }}$ and Leandro Helgueira Andrade*a

${ }^{a}$ Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, SP 05508-900, São Paulo (Brazil).
${ }^{b}$ Connecticut College, 270 Mohegan Avenue, New London, CT 06320, EUA.
*e-mail: leandroh@iq.usp.br

Supporting Information

Table of Contents

General S2
Synthesis and Characterization of the Benzoic Acid Resin (BAR) S3
Assembly for Continuous Flow Oxidations of $\boldsymbol{\beta}$-O-4 Lignin Models
Mediated by BAR S4
Synthesis of the $\boldsymbol{\beta}$-O-4 Lignin Models S5
NMR Data for the Products (Table 3) S9
References S14
NMR Spectra of the β-O-4 Lignin Models and Products (Table 3) S15

General

Chemicals: Starting materials were purchased from Sigma-Aldrich ${ }^{\circledR}$ and used without further purification. Solvents were purified by standard procedures. ${ }^{1}$

Analytical Methods: The reaction outcomes were analyzed by Merck ${ }^{\circledR}$ Thin Layer Chromatography Silica Gel $60 \mathrm{~F}_{254}$, visualized with UV light and revealed with vanillin solution in $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$ followed by heating. Conversions were analyzed by GC-FID, GCMS and ${ }^{1} \mathrm{H}$ NMR analysis. The GC-17A (Shimadzu ${ }^{\circledR}$) chromatograph with flame ionization detector (FID), equipped with Agilent ${ }^{\circledR}$ HP-5 capillary column was used. The GC-FID conditions were: injector $=260^{\circ} \mathrm{C}$; detector $=280^{\circ} \mathrm{C}$; pressure $=100 \mathrm{kPa}$. The column temperature range was $40{ }^{\circ} \mathrm{C}$ to $115{ }^{\circ} \mathrm{C}$ at $10{ }^{\circ} \mathrm{C} / \mathrm{min}$. GC-MSQP2010SE (Shimadzu ${ }^{\circledR}$) with low-resolution electron impact (EI, 70 eV) chromatograph, equipped with a Restek ${ }^{\circledR}$ Rtx-5MS capillary column, was also employed. The GC-MS conditions were: injector $=260^{\circ} \mathrm{C}$; detector $=280^{\circ} \mathrm{C}$; pressure $=100 \mathrm{kPa}$. The column temperature range was $40^{\circ} \mathrm{C}$ to $115^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$ and hold time $\left.=15 \mathrm{~min}\right)$. Varian ${ }^{\circledR}$ INOVA (300 MHz) and Bruker ${ }^{\circledR}$ Avance III (300 MHz) spectrometers were used in the NMR characterizations. The chemical shifts of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were referenced either to tetramethylsilane as internal standard (${ }^{1} \mathrm{H}$ NMR: CDCl_{3} at $\delta 7.26 \mathrm{ppm}$ and acetone- d_{6} at $\delta 2.05 \mathrm{ppm})$ or deuterated solvent $\left({ }^{13} \mathrm{C}\right.$ NMR $=\mathrm{CDCl}_{3}$ at $\delta 77.16 \mathrm{ppm}$ and acetone- d_{6} at $\delta 29.92 \mathrm{ppm}$ and $\delta 206.25 \mathrm{ppm}$). High-resolution mass spectra were obtained on a Bruker ${ }^{\circledR}$ Daltonics MicroToF spectrometer using electrospray ionization-time of flight (ESI-TOF) techniques. The melting points were determined with a BÜCHI ${ }^{\circledR}$ B-545 apparatus. Scanning Electron Microscopy (SEM) images were obtained using a JEOL ${ }^{\circledR}$ JSM 7401F field emission gun electron microscope. Samples were prepared by the conductive double-sided carbon tape technique. All experiments described in this study were carried out at least in sextuplicate.

Synthesis and Characterization of the Benzoic Acid Resin (BAR)

Scheme SI

Considering solvent recycle, the E Factor value was calculated as follows: Obtained mass of $\mathbf{B A R}=2.49 \mathrm{~g}$; Mass of reagents $=9.25 \mathrm{~g}(1.97 \mathrm{~g}$ of TMEDA +1.54 g of $n-\mathrm{BuLi}+$ 3.00 g of $\mathrm{CO}_{2(\mathrm{~s})}+2.74 \mathrm{~g}$ of HCl$)$; Amount of poly(styrene-co-divinylbenzene) $\mathbf{1}=2.00$ g.
E Factor $=(2.00+9.25-2.49) / 2.49=3.5$
Resin 1 and BAR were also characterized by SEM (Figure S1).

Figure $\mathrm{S1} 10 \mathrm{SEM}$ images of $\mathbf{1}(\mathrm{A})$ and $\mathbf{B A R}^{\times 350}(\mathrm{~B})$ at $\times 100$ and $\times 350$ magnifications.

Assembly for Continuous Flow Oxidations of $\boldsymbol{\beta}-\mathrm{O}-4$ Lignin Models Mediated by BAR

Figure S2: Assembly for the continuous flow system mediated by BAR.

Synthesis of the $\boldsymbol{\beta}$-O-4 Lignin Models

The synthesis and characterization of the ether-substituted α-phenoxyacetophenones (iiiia e) from ether-substituted acetophenones ($\mathbf{i}_{\text {a-c }}$) was published by our group (Scheme S2). ${ }^{2}$

Scheme S2 ${ }^{2}$

1-(4-(benzyloxy)phenyl)ethanone ($\mathbf{i}_{\mathrm{c}}, \mathbf{1 0}$): white powder.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta=7.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.44-7.34 (m, 5H), 7.00 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.14 (s, 2H), 2.55 ($\mathrm{s}, 3 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=196.9,162.8,136.2,130.7$
(2C), 128.8 (2C), 128.4, 127.6 (2C), 114.7 (2C), 70.3, 26.5
ppm.
$\mathbf{m p}\left({ }^{\circ} \mathbf{C}\right): ~ 90-91$ (lit. ${ }^{4}$ 89-90).
$\boldsymbol{R}_{f}: 0.72$ (3:7 EtOAc/hexanes).
\#CAS: 54696-05-8.
1-(4-(benzyloxy)phenyl)-2-phenoxyethanone (iiia, 11): beige solid.

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \delta=7.99(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, 2H), 7.42-7.25 (m, 7H), 7.04-6.92 (m, 5H), 5.19 (s, 2 H), 5.13 ($\mathrm{s}, 2 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=193.2,163.3,158.2$,
136.1, 130.7 (2C), 129.7 (2C), 128.8 (2C), 128.4, $127.9,127.6$ (2C), 121.7, 115.0 (2C), 114.9 (2C), $70.8,70.3 \mathrm{ppm}$.
$\mathbf{m p}\left({ }^{\circ} \mathbf{C}\right): 111-112$.
$\boldsymbol{R}_{\boldsymbol{f}}: 0.66$ (3:7 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes).
\#CAS: 2173138-44-6.

For the synthesis of the ether-substituted α, α-(hydroxymethyl)phenoxyacetophenones 12-16, a slightly modified procedure for the aldol addition between formaldehyde (HCHO) and iiii ${ }_{\text {a-e }}$ (Scheme S3), previously described for Magallanes et al. ${ }^{3}$, was employed.

Scheme S3 ${ }^{3}$

$\mathrm{iii}_{\mathrm{a}-\mathrm{e}}$
$\mathrm{iii}_{\mathrm{a}}$ (11): $\mathrm{R}=p-\mathrm{OBn} ; \mathrm{R}^{1}=\mathrm{H}$
$\mathrm{iii}_{\mathrm{b}}: \mathrm{R}=p-\mathrm{OMe} ; \mathrm{R}^{1}=o-\mathrm{OMe}$
$\mathrm{iii}_{\mathrm{c}}: \mathrm{R}=p$-OMe; $\mathrm{R}^{1}=p-\mathrm{OMe}$ $\mathrm{iii}_{\mathrm{d}}: \mathrm{R}=m-\mathrm{OMe} ; \mathrm{R}^{1}=o-\mathrm{OMe}$ $\mathrm{iii}_{\mathrm{e}}: \mathrm{R}=m-\mathrm{OMe} ; \mathrm{R}^{1}=p-\mathrm{OMe}$

12-16
$12: \mathrm{R}=\mathrm{p}-\mathrm{OBn} ; \mathrm{R}^{1}=\mathrm{H}$
$13: \mathrm{R}=p-\mathrm{OMe} ; \mathrm{R}^{1}=o-\mathrm{OMe}$
$14: \mathrm{R}=p-\mathrm{OMe} ; \mathrm{R}^{1}=p-\mathrm{OMe}$
$15: \mathrm{R}=m-\mathrm{OMe} ; \mathrm{R}^{1}=o-\mathrm{OMe}$
$16: \mathrm{R}=m-\mathrm{OMe} ; \mathrm{R}^{1}=p-\mathrm{OMe}$

Substrates iii $_{\text {a-e }}(7.00 \mathrm{mmol})$ were solubilized in 50 mL of a mixture of acetone and ethanol ($1: 1$). Potassium carbonate $(1.06 \mathrm{~g}, 7.70 \mathrm{mmol})$ was added and the reaction mixture was left stirring for 5 minutes. Then, formalin (aqueous, $37 \% \mathrm{wt}, 830 \mu \mathrm{~L}, 10.5$ mmol) was added, stirred for 2 h at room temperature. The reaction mixture was analyzed by TLC. Due to the presence of starting material, formalin ($37 \% \mathrm{wt}, 275 \mu \mathrm{~L}, 3.50 \mathrm{mmol}$) was added once again. After 30 min , the solvent was evaporated under reduced pressure, and water $(50 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ were added to the flask. The aqueous layer was wsahed with $\mathrm{CHCl}_{3}(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with water, brine, and then dried over anhydrous MgSO_{4}. The organic layer was concentrated and purified by column chromatography (EtOAc/hexanes).

1-(4-(benzyloxy)phenyl)-3-hydroxy-2-phenoxypropan-1-one (12): yield $=91 \%(2.20$

g), pearl-white solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta=8.05(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, 2 H), $7.41-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{dd}, J=4.5 \mathrm{~Hz}, J=5.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{dd}, J=2.4 \mathrm{~Hz}, J=$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.17-4.07(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{dd}, J=3.6 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=195.1,163.5,157.4,136.1,131.4$ (2C), 129.8 (2C), 128.9 (2C), 128.5, 128.0, 127.6 (2C), 122.0, 115.4 (2C), 115.1 (2C), $81.2,70.4,63.5 \mathrm{ppm}$.
$\mathbf{m p}\left({ }^{\circ} \mathbf{C}\right): 107-109$.
$\boldsymbol{R}_{\boldsymbol{f}}: 0.41$ (5:5 AcOEt/hexanes).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{4}: 349.1440$, found: 349.1433 .
\#CAS: 2183492-22-8.
3-hydroxy-2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)propan-1-one (13): yield = 83% (1.76 g), pale-yellow syrup.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, acetone- \mathbf{d}_{6}): $\delta=8.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2H), 7.08-6.76 (m, 6H), 5.51 (t, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-$ $4.045 .13(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.79(\mathrm{~m}$, 1H) ppm.
${ }^{13}$ C NMR (75 MHz , acetone- \mathbf{d}_{6}): $\delta=196.1,164.8,151.3,148.6,132.1$ (2C), 129.7, $123.3,121.7,117.5,114.7$ (2C), 113.9, 84.3, 64.1, 56.3, 56.0 ppm .
$\boldsymbol{R}_{\boldsymbol{f}}: 0.39$ (4:6 AcOEt/hexanes).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}: 303.1233$, found: 303.1231.
\#CAS: 92409-23-9.
3-hydroxy-2-(4-methoxyphenoxy)-1-(4-methoxyphenyl)propan-1-one (14): yield =
 87% (1.84 g), colorless crystals.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, acetone-d $\mathbf{d}_{\mathbf{6}}$): $\delta=8.13$ (d, $J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.89$ (d, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.48 (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.23(\mathrm{dd}, J=5.5 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.80$
($\mathrm{s}, 3 \mathrm{H}$), 2.85 (bs, 1H) ppm.
${ }^{13} \mathbf{C}$ NMR (75 MHz , acetone- \mathbf{d}_{6}): $\delta=196.3,164.9,155.3,153.0,132.0$ (2C), 129.5, 117.3 (2C), 115.4 (2C), 114.8 (2C), 83.6, 64.0, 56.1, 55.8 ppm .
$\mathbf{m p}\left({ }^{\circ} \mathbf{C}\right): ~ 94-96$ (lit. ${ }^{5}$ 93-96).
$\boldsymbol{R}_{\boldsymbol{f}}: 0.34$ (4:6 AcOEt/hexanes).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}$: 303.1233, found: 303.1239.
\#CAS: 2093366-73-3.
3-hydroxy-2-(2-methoxyphenoxy)-1-(3-methoxyphenyl)propan-1-one (15): yield = $90 \%(1.90 \mathrm{~g})$, non-crystalline beige solid.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, acetone- $\mathbf{d}_{\mathbf{6}}$): $\delta=7.72$ (ddd, $J=1.2 \mathrm{~Hz}$, $J=0.9 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=1.5 \mathrm{~Hz}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (ddd, $J=0.9$ $\mathrm{Hz}, J=0.9 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.89(\mathrm{~m}$, $3 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.56(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, 2.81 (bs, 1H) ppm.
${ }^{13}$ C NMR (75 MHz , acetone- $\mathbf{d}_{\mathbf{6}}$): $\delta=197.6,160.8,151.2,148.5,138.1,130.6,123.4$, 122.0, 121.6, 120.3, 117.6, 114.2, 113.8, 84.2, 64.0, 56.2, 55.8 ppm .
$\boldsymbol{R}_{f}: 0.40$ ($4: 6 \mathrm{AcOEt} /$ hexanes).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}: 303.1233$, found: 303.1245 .
\#CAS: 20730-76-1.
3-hydroxy-2-(4-methoxyphenoxy)-1-(3-methoxyphenyl)propan-1-one (16): yield =

$86 \%(1.82 \mathrm{~g})$, white powder.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, acetone- \mathbf{d}_{6}): $\delta=7.65$ (ddd, $J=1.1$ $\mathrm{Hz}, J=0.9 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J$
$=1.5 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{ddd}, J=0.9 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}, J=$ $2.7 \mathrm{~Hz}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.83(\mathrm{~m}, 4 \mathrm{H}), 5.64(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 2 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{bs}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (75 MHz , acetone- \mathbf{d}_{6}): $\delta=197.4,160.9,155.3,153.0,137.9,130.4,123.6$, $120.0,117.8,115.1$ (2C), 114.6 (2C), 84.5, 64.1, $55.9,55.7 \mathrm{ppm}$.
$\mathbf{m p}\left({ }^{\circ} \mathbf{C}\right): ~ 90-93$.
$\boldsymbol{R}_{f}: 0.42$ ($4: 6 \mathrm{AcOEt} /$ hexanes).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}: 303.1233$, found: 303.1247.

NMR data for the Products (Table 3, Scheme S4)

Scheme S4

4-(benzyloxy)phenyl acetate (17): yield for Entry 1, Table $3=16 \%(34.2 \mathrm{mg}, 0.14$ mmol), colorless crystals.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.44-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.31$
(ddd, $J=1.5 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.02-6.94 (m, 4H), $5.04(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=170.0,156.7,144.6,137.0$, 128.8 (2C), 128.2, 127.6 (2C), 122.5 (2C), 115.6 (2C), $70.6,21.2 \mathrm{ppm}$.
$\mathbf{m p}\left({ }^{\circ} \mathbf{C}\right):$ 111-112 (lit. ${ }^{6} 100-111$).
$\boldsymbol{R}_{f}: 0.67$ (5:5 AcOEt/hexanes).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3}: 243.1021$, found: 243.1015 .
\#CAS: 6311-66-6.
1,4-benzoquinone (6): yield for Entry 6, Table $3=89 \%$ ($56.2 \mathrm{mg}, 0.52 \mathrm{mmol}$), neon-
 yellow crystals.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=6.79(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=187.1$ (2C), 136.4 (4C) ppm.
mp (${ }^{\circ} \mathbf{C}$):112-115 (lit. ${ }^{7}$ 115-116).
$\boldsymbol{R}_{\boldsymbol{f}}: 0.91$ (6:4 AcOEt/hexanes).
MS (EI+): m / z (relative intensity) 108 ($\mathbf{M}^{+}, 89$), 54 (100).
\#CAS: 106-51-4.
4-(benzyloxy)phenyl 2-phenoxyacetate (18): yield for Entry 3, Table $3=22 \%$ (64.8 mg ,
 0.19 mmol), pale-yellow solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.43-7.30(\mathrm{~m}, 7 \mathrm{H})$, 7.04-6.94 (m, 7H), $5.05(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.86(\mathrm{~s}$, 2H) ppm.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=168.0,157.9$, $156.8,143.9,136.8,129.8$ (2C), 128.8 (2C), 128.2, 127.6 (2C), 122.2 (2C), 122.1, 115.7 (2C), 114.9 (2C), $70.6,65.6 \mathrm{ppm}$.
$\mathbf{m p}\left({ }^{\circ} \mathbf{C}\right): 124-127$.
$\boldsymbol{R}_{f}: 0.59$ (5:5 AcOEt/hexanes).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}: 357.1103$, found: 357.1099. \#CAS: 686311-24-0.

4-(benzyloxy)phenyl 3-hydroxy-2-phenoxypropanoate (19): yield for Entry 5, Table 3 $=8 \%(16.7 \mathrm{mg}, 0.04 \mathrm{mmol})$, beige solid.

${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=7.42-7.22(\mathrm{~m}$, $7 \mathrm{H}), 7.0-6.88(\mathrm{~m}, 7 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{dd}, J=5.7$ $\mathrm{Hz}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.16(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{bs}, 1 \mathrm{H})$ ppm.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=168.9$, 158.1, $156.9,144.5,135.1$ (2C), 130.0 (2C), 128.3, 127.7 (2C), 122.5, 122.4 (2C), 115.8 (2C), 115.0 (2C), 89.5, 70.5, 63.4 ppm .
mp (${ }^{\circ} \mathbf{C}$): 137-139.
$\boldsymbol{R}_{\boldsymbol{f}}: 0.62$ (6:4 AcOEt/hexanes).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}: 387.1209$, found: 387.1218. 4-benzyloxyphenol (24): Table 3, conjoined traces (8.5 mg),
 white powder.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.42-7.29$ (m, 5H), 6.85 (d, , $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{bs}, 1 \mathrm{H}), 4.99(\mathrm{~s}$, 2H) ppm.
m.p. $\left({ }^{\circ} \mathbf{C}\right):$ 120-122 (lit. ${ }^{6}$ 121-122).
$\boldsymbol{R}_{\boldsymbol{f}}: 0.12$ (6:4 AcOEt/hexanes).
\#CAS: 103-16-2.
4-methoxyphenyl 3-hydroxy-2-(2-methoxyphenoxy)propanoate (20): yield for Entry

6 , Table $3=9 \%(16.5 \mathrm{mg}, 0.05 \mathrm{mmol})$, opaque white crystals.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.26-6.76(\mathrm{~m}, 8 \mathrm{H}), 4.88$ (dd, $J=3.9 \mathrm{~Hz}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (ddd, $J=6.3 \mathrm{~Hz}, J$ $=3.9 \mathrm{~Hz}, J=11.7 \mathrm{~Hz}, J=26.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.75$
($\mathrm{s}, 3 \mathrm{H}$), 3.30 (bs, 1H) ppm.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=168.6,150.1,147.4,143.8,143.3,123.1,122.0$ (2C), $120.9,115.6,114.9$ (2C), 112.6, 81.0, $67.3,56.0,55.6 \mathrm{ppm}$.
mp (${ }^{\circ} \mathbf{C}$): 146-149.
$\boldsymbol{R}_{\boldsymbol{f}}: 0.70$ ($6: 4 \mathrm{AcOEt} /$ hexanes).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{6}$: 319.1182, found: 319.1190 .
4-methoxyphenol (5): Table 3, conjoined traces (6.5 mg), off white
 powder.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=6.81-6.75(\mathrm{~m}, 4 \mathrm{H}), 4.60(\mathrm{bs}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
mp (${ }^{\circ} \mathbf{C}$): 56-57 (lit. ${ }^{8}$ 54-56).
$\boldsymbol{R}_{\boldsymbol{f}}: 0.16$ (6:4 AcOEt/hexanes).
\#CAS: 150-76-5.
4-methoxyphenyl 3-hydroxy-2-(4-methoxyphenoxy)propanoate (21): yield for Entry

(bs, 1 H) ppm.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=168.9,157.7,155.2,151.6,143.8,122.2$ (2C), 117.2 (2C), 114.9 (2C), 114.6 (2C), 79.1, 63.6, 55.7, 55.6 ppm .
$\mathbf{m p}\left({ }^{\circ} \mathbf{C}\right): 150-152$.
$\boldsymbol{R}_{f}: 0.72$ (6:4 AcOEt/hexanes).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{6}$: 319.1182, found: 319.1196.
3-methoxyphenyl 3-hydroxy-2-(2-methoxyphenoxy)propanoate (22): yield for Entry
 7, Table $3=8 \%(14.6 \mathrm{mg}, 0.05 \mathrm{mmol})$, white powder. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.02(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, 2H), $6.95-6.82(\mathrm{~m}, 6 \mathrm{H}), 4.89$ (dd, $J=4.5 \mathrm{~Hz}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{ddd}, J=5.1 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, J=12.0$ $\mathrm{Hz}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 2.70$

8 , Table $3=11 \%$ ($20.0 \mathrm{mg}, 0.06 \mathrm{mmol}$), yellow oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.21(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01-6.77$ (m, 7H), 4.89 (dd, $J=3.9 \mathrm{~Hz}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 (ddd, $J=6.3 \mathrm{~Hz}, J=3.9 \mathrm{~Hz}, J=11.7 \mathrm{~Hz}, J=27.3$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.87 (s, 3H), 3.84 (s, 3H), 3.16 (bs, 1H) ppm.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=169.1,160.4,151.9,147.2,143.6,130.0,123.2,120.6$, $116.0,114.2,112.7,111.3,107.5,83.0,68.1,56.0,55.6 \mathrm{ppm}$.
$\boldsymbol{R}_{\boldsymbol{f}}: 0.75$ (6:4 AcOEt/hexanes).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{6}: 319.1182$, found: 319.1177.
3-methoxyphenol (7): Table 3, conjoined traces (6.2 mg), deep-brown liquid.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.14(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.44$ $(\mathrm{m}, 3 \mathrm{H}), 5.56(\mathrm{bs}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. $\boldsymbol{R}_{f}: 0.15$ (6:4 AcOEt/hexanes).
\#CAS: 150-19-6.
2-methoxycyclohexa-2,5-diene-1,4-dione (8): yield for Entry 8, Table 3 = 84\% (56.2
 $\mathrm{mg}, 0.52 \mathrm{mmol}$), beige powder.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=6.71(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, 3H) ppm.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=187.4,181.5,158.6,137.0,134.3$,
107.5, 56.2 ppm .
mp (${ }^{\circ} \mathbf{C}$): 144-145 (lit. ${ }^{9}$ 144-146).
$\boldsymbol{R}_{\boldsymbol{f}}: 0.88$ (6:4 AcOEt/hexanes).
MS (EI ${ }^{+}$): m / z (relative intensity) $138\left(\mathrm{M}^{+}, 53\right), 108$ (68), 69 (100).
\#CAS: 2880-58-2.
3-methoxyphenyl 3-hydroxy-2-(4-methoxyphenoxy)propanoate (23): yield for Entry 9 , Table $3=10 \%(18.4 \mathrm{mg}, 0.06 \mathrm{mmol})$, pale-yellow non-crystalline solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.20(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.83(\mathrm{~m}, 7 \mathrm{H}), 4.90(\mathrm{dd}$,
 $J=4.5 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{ddd}, J=5.1 \mathrm{~Hz}, J$ $=4.5 \mathrm{~Hz}, J=11.7 \mathrm{~Hz}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, 3.75 (s, 3H), 2.93 (bs, 1H) ppm.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta=169.0,160.2,152.1$, 151.2, 145.9, 129.9, 115.2 (2C), 114.7 (2C), 113.8,
111.7, 107.2, 80.5, 68.0, 55.7, 55.6 ppm .
$\boldsymbol{R}_{f}: 0.73$ ($6: 4 \mathrm{AcOEt} /$ hexanes).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{6}: 319.1182$, found: 319.1185 .

At the end of this study, after approximately 700 reactions showing the same catalytic activity, BAR was unloaded from the packed-bed reactor and analyzed by SEM (Figure S3).

Figure S3: SEM images of recycled BAR at x100 and x350 magnifications.

Considering solvent recycle, the E Factor was calculated as follows: Obtained mass of products $=72.7 \mathrm{mg}(56.2 \mathrm{mg}$ of $\mathbf{6}+16.5 \mathrm{mg}$ of $\mathbf{2 0})$; Mass of reagents $=1008.3 \mathrm{mg}(60.7$ mg of $\mathrm{H}_{2} \mathrm{O}_{2}+342.8 \mathrm{mg}$ of $\mathrm{MeSO}_{3} \mathrm{H}+604.8 \mathrm{mg}$ of NaHCO_{3}); Amount of the starting material $\mathbf{1 3}=179.7 \mathrm{mg}$.
E Factor $=(179.7+1008.3-72.7) / 72.7=15.3$.

Experimental

[1] D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals, 2nd ed. Oxford: Pergamon Press; 1989.
[2] W. C. C. Santos, K. A. Dias, L. P. Santos, C. M. Kisukuri, T. S. Rodrigues, R. S. Geonmonond, P. H. C. Camargo and L. H. Andrade, Adv. Synth. Catal., 2018, 360, 1376-1383.
[3] G. Magallanes, M. D. Kärkäs, I. Bosque, S. Lee, S. Maldonado and C. R. J. Stephenson, ACS Catal., 2019, 9, 2252-2260.
[4] C. -F. Lin, J. -S. Yang, C. -Y. Chang, S. -C. Kuo, M. -R. Lee and L. -J. Huang, Bioorg. Med. Chem., 2005, 13, 1537-1544.
[5] A. C. Lindsay, S. Kudo and J. Sperry, Org. Biomol. Chem., 2019, 17, 7408-7415.
[6] G. W. K. Cavill and D. H. Solomon, J. Chem. Soc., 1955, 1404-1407.
[7] A. A. Zagulyaeva, C. T. Banek, M. S. Yusubov and Viktor V. Zhdanki, Org. Lett., 2010, 12, 4644-4647.
[8] H. Yang,Y. Li, M. Jiang, J. Wang and H. Fu, Chem. Eur. J., 2011, 17, 5652-5660.
[9] F. Derikvand, F. Bigi, R. Maggi, C. G. Piscopo and G. Sartori, J. Catal., 2010, 271, 99-103.

Abstract

 $\stackrel{\sim}{\sim}$

Figure S4. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 0}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S5. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 0}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 1}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S7. ${ }^{13} \mathrm{C}$ NMR Spectrum of $11\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 2}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S9. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 2}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S10．${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 3}\left(300 \mathrm{MHz}\right.$ ，acetone－ $\left.\mathrm{d}_{6}\right)$ ．

Figure S11．${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 3}\left(75 \mathrm{MHz}\right.$ ，acetone－ $\left.\mathrm{d}_{6}\right)$ ．
$\underbrace{n \pm m 』}$

Figure S12. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 4}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right)$.

Figure S13. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 4}\left(75 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right)$.

Figure S14. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 5}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right)$.

Figure S15. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 5}\left(75 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right)$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 6}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right)$.

Figure S17. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 6}\left(75 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right)$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 7}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S19. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 7}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S20. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{6}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S21. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{6}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S22. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 8}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S23. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 8}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S24. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 9}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S25. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 9}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S26. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 0}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S27. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 0}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S28. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 1}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S29. ${ }^{13} \mathrm{C}$ NMR Spectrum of $21\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S30. ${ }^{1} \mathrm{H}$ NMR Spectrum of $22\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S31. ${ }^{13} \mathrm{C}$ NMR Spectrum of $22\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S32. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{8}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

a
产
1

ก

Figure S33. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{8}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

$\stackrel{8}{i}$

Figure S34. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 3}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S35. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 3}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S36. ${ }^{1} \mathrm{H}$ NMR Spectrum of $5\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S37. ${ }^{1} \mathrm{H}$ NMR Spectrum of $7\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S39. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 4}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

