Electronic Supplementary Information (ESI⁺)

One step sample treatment and loading using deep eutectic solvent immobilized in porous substrate for thermal ionization mass spectrometry of Pu(IV) ions

Raju V. Shah,^{a,c*} Ashok K. Pandey,^{b,c} S. Jagadish Kumar,^aSumana Paul,^a Radhika M. Rao,^{a*} P.G. Jaison^a

^{a.} Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India. Email: rvshah_243@rediffmail.com (R.V. Shah); <u>ashokk@barc.gov.in</u> (A.K.Pandey); <u>jkumars@barc.gov.in</u> (S. Jagadish Kumar); <u>sumana@barc.gov.in</u> (Sumana Paul);<u>rmrao@barc.gov.in</u> (R.M. Rao); <u>jaipg@barc.gov.in</u> (P.G.Jaison)

^{b.} Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085,India.

^c Homi Bhabha National Institute, TSH, Anushaktinagar, Mumbai-400 094, India.

Fig. S1. The machanochemical synthesis of DES.

mp :28-31 °C

Tetraheptylammoniumbromide(≥99.0%) and undecanoic acid (98%)were obtained from Sigma-Aldrich.

Fig.S2. Preparation of DES-PPM by physical immobilization of UDA-THAB DES in the microporous poly(propylene) membrane.

Membrane:Poly (propylene) membrane (Sterlitech make) having 0.2 μ m pore-size and 150±15 μ m thickness.Methanol-AR was obtained from S.D.Fine Chemical Ltd., Mumbai.

Fig. S3. The sorption profile of Pu (IV) from aqueous solution to the DES-PPM as function of equilibration time.

Conditions for extraction: Aqueous phase-3 M HNO₃, Volume: 10 ml, Membrane size: 1 cm * 2 cm, stirring @ 600 rpm.

Fig. S4. TGA/DTA analyses of UDA-THAB DES.

Fig. S5. DSC thermogram of the UDA-THAB DES.

The melting point temperature of the prepared DES was studied using differential scanning calorimetry (Mettler Toledo DSC1 STARe).

Fig. S6. FTIR spectra of THAB, UDA and UDA-THAB DES and corresponding overlapped spectra.

All Fourier transformed infrared (FTIR) spectra were recorded on a PerkinElmer Spectrum Two spectrometer equipped with a Spectrum Two UATR (universal attenuated total reflectance) module. Allsamples were scanned over a wavenumber range of 450-4000 cm⁻¹.

Table S1. The UDA-THAB DES immobilization in the microporous poly(propylene) membrane(PPM). Dimensions of membrane samples used were5cm×5cm.

Sample No.	Wt. of PPM before loading (g)	Wt. of PP membrane after DES loading (g)	%Wt. Gain	Average % Wt. gain (± % RSD-3σ)
1	0.0569	0.3816	570	
2	0.0600	0.3853	542	556 ± 3
3	0.0592	0.3884	556	

Table S2. Isoto	pic Compositio	n and concentra	ation of Plutonium	Spikes.

Isotope Ratio (± % RSD-3 σ)	²³⁹ Pu Spike	²⁴⁰ Pu Spike	
²³⁸ Pu/ ²³⁹ Pu	0.00123 ± 3	0.00273 ± 3	
²⁴⁰ Pu/ ²³⁹ Pu	0.010860 ± 0.05	0.40382 ± 0.005	
²⁴¹ Pu/ ²³⁹ Pu	0.000114 ± 1	0.030748 ± 0.1	
²⁴² Pu/ ²³⁹ Pu	0.000026 ± 3	0.031786 ± 0.1	
Concentration (µg/g) (± % RSD-1 σ)	11.25 ± 0.1	18.91 ± 0.2	

Determination of plutonium concentration using Isotope dilution mass spectrometry

A known weight W_{sp} of a pre-calibrated spike solution, having Pu concentration C_{sp} , is added to a known weight W_{sa} of the sample. From the change in the ²⁴⁰Pu/²³⁹Pu atom ratios in the spiked mixture (R_m) with respect to that in the sample (R_{sa}) and spike (R_{sp}),plutonium concentration is calculated using following equation:

$$C_{sa} = \frac{C_{sp} \times W_{sp}}{W_{sa} \times R_{sp}} \times \frac{(R_{sp} - R_m)}{(R_m - R_{sa})} \times \frac{A.F._{sp}}{A.F._{sa}} \times \frac{(Avg.At.Wt)_{sa}}{(Avg.At.Wt)_{sp}}$$

where, C_{sa} and C_{sp} are Pu concentrations in sample and spike, W_{sa} and W_{sp} are the weights of sample and spike in the mixture, R_{sa} , R_{sp} and R_m are the ²⁴⁰Pu/²³⁹Pu atom ratios in sample,spike and mixture, and A.F. and Avg.At.Wt. are the atom fractions and average atomic weights, respectively.