determined by EPMA, ICP-MS and SEMS.					
	Value	Uncertainty	n	method	Reference
SiO ₂	66.0%	1.15%	108	EPMA	Our study ^a
TiO ₂	2.89%	4.67%	108	EPMA	Our study ^a
Al_2O_3	13.76%	2.02%	108	EPMA	Our study ^a
MgO	5.42%	2.83%	108	EPMA	Our study ^a
CaO	7.20%	2.88%	108	EPMA	Our study ^a
Na ₂ O	2.51%	6.74%	108	EPMA	Our study ^a
Cr ₂ O ₃	1.32%	20.5%	108	EPMA	Our study ^a
Cr	11461 μg g ⁻¹	6.77%	3	ICP-MS	Our study ^b
50Cr/52Cr	0.051859	± 0.000100		SEMS ^c	Shields et al. (1966)58
53Cr/52Cr	0.113386	± 0.000145		SEMS ^c	Shields et al. (1966)58
54Cr/52Cr	0.028222	± 0.000059		SEMS ^c	Shields et al. (1966)58

 Table S1 Major element and Cr isotopic compositions of the synthetic Cr-979S standard determined by EPMA, ICP-MS and SEMS.

^aMajor element compositions of the synthetic Cr-979S standard were conducted on a JEOL JXA-8100 electron microprobe (EPMA) with a beam size of 10 μ m, an accelerating voltage of 15 kV and a beam current of 20 nA at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS).

^b The concentration of Cr was determined by solution ICP-MS (7500a, Agilent) at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS).

^cSEMS is the abbreviation for surface emission mass spectrometry.

Figure S1 Fe isotopic compositions measured by fs LA-MC-ICPMS in two grains of BCR-2G glasses mounted in different positions of the two-volume ablation cell (5000 cm³ with a super-high-sensitivity sample cup of 1.6 cm³). δ^{56} Fe_{BCR-2G} presents that δ^{56} Fe values of sample BCR-2G are reported relative to BCR-2G as reference standard. The red triangles represent average values in each group. The red line represents the theoretical value of δ^{56} Fe_{BCR-2G} = 0. Error bars are 2SE for individual measurements and 2SD for average values.

Figure S2 The homogeneity of Cr isotopic compositions of Cr-979S standard measured by fs LA-MC-ICPMS along a horizontal profile with a length of 8 millimeters. δ^{53} Cr_{Cr}-_{979S} presents that δ^{53} Cr values of the Cr-979S standard are reported relative to the Cr-979S standard as reference standard. The red triangle represents the average δ^{53} Cr_{Cr}-979S value of the Cr-979S standard. The red line represents the theoretical value of δ^{53} Cr_{Cr}-_{979S} = 0. Error bars are based on 2SE for individual measurements and 2SD for average value.

