## SUPPLEMENTARY INFORMATION

## Microfluidic circuit consisting of indivisualized components with 3D slope valve for automation of sequential liquid control

Dong Hee Kang,<sup>a</sup> Na Kyong Kim,<sup>a</sup> Sang Woo Park,<sup>b</sup> Wonoh Lee <sup>a</sup> and Hyun Wook Kang <sup>\*a</sup>

<sup>a</sup> Department of Mechanical Engineering, Chonnam National University 77 Youngbong-ro, Buk-Gu, Gwangju 61186, Republic of Korea <sup>b</sup> Department of Ophthalmology, Chonnam National University Medical School and Hospital, Baekseo-ro, Dong-Gu, Gwangju 61469, Republic of Korea

May, 2020

\*Corresponding author: Prof. Hyun Wook Kang

Tel: +82-62-530-1662

Fax: +82-62-560-1689

E-mail:

kanghw@chonnam.ac.kr

## **Supplementary material**

**Figure S1.** The schematics of printing and stacking of 3D printed parts with (a) horizontal and (b) vertical direction using stereolithography apparatus (SLA). The SEM images of 3D printed part surface (a-1 and a-2) on stacking direction and (b-1 and b-2) on printing direction.

**Figure S2.** The SEM images of 3D printed surface on (a-d) stacking direction and (e-h) printing direction with circle hole (Designed diameter, D =500, 250, 200, 100  $\mu$ m).

**Figure S3.** (a) A schematic and (b) optical microscope image of liquid meniscus in connection channel for capillary pressure calculation.

**Figure S4.** Liquid column head position in assembled module straight channel (0° Slope angle) with increasing module holder disk rotation speed.

**Figure S5.** A flow chart of the fluorescence-linked immuosorbent assay (FLISA) protocol for VEGF detection in microfluidic disk platform. A VEGF reagents using bead-based FLISA in microfluidic disk are controlled through disk angluar velocity and rotation direction for reagents incubation and sedimentation of beads.

**Table S1.** Physical properties (density, surface tension, viscosity at 25°C) of ethanol,DI water, oilve oil, polyethylene glycol, and glycerol



**Figure S1.** The schematics of printing and stacking of 3D printed parts with (a) horizontal and (b) vertical direction using stereolithography apparatus (SLA). The SEM images of 3D printed part surface (a-1 and a-2) on stacking direction and (b-1 and b-2) on printing direction.



**Figure S2.** The SEM images of 3D printed surface on (a-d) stacking direction and (e-h) printing direction with circle hole (Designed diameter, D =500, 250, 200, 100  $\mu$ m).



**Figure S3.** (a) A schematic and (b) optical microscope image of liquid meniscus in connection channel for capillary pressure calculation.



**Figure S4.** Liquid column head position in assembled module straight channel (0° Slope angle) with increasing module holder disk rotation speed.



**Figure S5.** A flow chart of the fluorescence-linked immuosorbent assay (FLISA) protocol for VEGF detection in microfluidic disk platform. A VEGF reagents using bead-based FLISA in microfluidic disk are controlled through disk angluar velocity and rotation direction for reagents incubation and sedimentation of beads.

| Liquid                               | ho (kg m <sup>-3</sup> ) | γ (mN m <sup>-1</sup> ) | $\mu$ (mPa s) |
|--------------------------------------|--------------------------|-------------------------|---------------|
| Ethanol <sup>[1]</sup>               | 782                      | 22.4                    | 1.05          |
| DI water <sup>[2]</sup>              | 997                      | 72.0                    | 0.89          |
| Olive oil <sup>[3,4]</sup>           | 915                      | 33.0                    | 69.0          |
| Polyethylene glycol <sup>[5,6]</sup> | 1128                     | 42.4                    | 101.5         |
| Glycerol <sup>[7-9]</sup>            | 1261                     | 63.0                    | 917.6         |

**Table S1.** Physical properties (density, surface tension, viscosity at 25°C) of ethanol,DI water, oilve oil, polyethylene glycol, and glycerol

## Notes and references

[1] I. S. Khattab, F. Bandarkar, M. A. A. Fakhree and A. Jouyban, *Korean J. Chem. Eng.*, 2012, **29**, 812-817.

[2] M. L. Huber, R. A. Perkins, A. Laesecke, D. G. Friend, J. V. Sengers, M. J. Assael,
I. N. Metaxa, E. Vogel, R. Mares, and K. Miyagawa, J. Phys. Chem. Ref. Data,
2009, 38, 101-125.

[3] C. Peri, *The extra-virgin olive oil chain*, John Wiley & Sons, Ltd, Chichester, UK, 2014.

[4] E. A. Melo-Espinosa, Y. Sánchez-Borroto, M. Errasti, R. Piloto-Rodríguez, R. Sierens, J. R. Riba Ruiz and A Christopher-Hansen, *Energy Procedia*, 2014, 57, 886-895.

[5] T. Y. Ma, D. Hollander, P. Krugliak and K Katz, *Gastroenterology*, 1990, **98**, 39-46.

[6], M. C. Sequeira, M. F. Pereira, H. M. Avelino, F. J. Caetano and J. M. Fareleira, *Fluid Phase Equilib.*, 2019, **496**, 7-16.

[7] J. B. Segur and H. E. Oberstar, Ind. Eng. Chem., 1951, 43, 2117-2120.

[8] S. A. Adio, M. Sharifpur and J. P. Meyer, Heat Transf. Eng., 2015, 36, 1241-1251.

[9] W. M. Haynes, Eds., *CRC handbook of chemistry and physics*, CRC press, Florida, USA, 2014.