Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Defect induced "Super mop" like behaviour of Eu³⁺-doped hierarchical Bi₂SiO₅ nanoparticles for improved catalytic and adsorptive behaviour

Debashrita Sarkar, Sagar Ganguli, Athma E. Praveen and Venkataramanan Mahalingam*

Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, India

Email: <u>mvenkataramanan@yahoo.com</u>

Fig. S1: (a) PXRD pattern for time dependent formation of $Eu_{1.5}$ -BSO nanoparticles (b) PXRD pattern of BSO nanoparticles formed after 24h (c) PXRD pattern for time dependent formation of BSO nanoparticles and (d) Normalised intensity of (100) plane depicting shift in 20 due to Eu^{3+} doping.

Fig. S2: Rietveld refinement of Eu_{1.5}-BSO nanoparticles.

Formula		(В	i _{0.985} Eu _{0.15}) ₂ Si	O ₅			
Crystal System	Monoclinic						
Space Group			Сс				
Cell parameters		a=15.11	1368 Å ,b= 5.4	12673 Å			
			,c= 5.29606 Å	N			
		α= γ= 90 ° β= 90.224°					
Cell Volume			434.368 Å ³				
Density			7.981				
R _{wp}			10.185%				
GOF			2.4				
Atom	Wyckoff	Occupancy	Ato	mic coordina	ites		
	position		x	У	z		
Bi1	4a	0.9850	0.1696	0.2166	0.2609		
Bi2	4a	1	0.8399	0.2195	0.274		
Si	4a	1	0.5057	0.172	0.2459		
01	4a	1	0.499	0.0166	0.5112		
02	4a	1	0.5858	0.3309	0.2247		
O3	4a	1	0.4039	0.3233	0.2268		
O4	4a	4a 0.795 0.2497 0.4942 0.4949					
O5	4a	1	0.2563	0.2563	0.2563		
Eu	4a	0.015	0.1696	0.2166	0.2609		

Table S1: Crystallographic data of (Bi_{0.985}Eu_{0.15})₂SiO₅ determined using Reitveld refinement.

Fig. S3: XPS spectra of (a) Bi 4f for BSO, (b) Bi 4f for Eu_{1.5}-BSO, (c) Si 2p for BSO, and (d) Si 2p for Eu_{1.5}-BSO nanoparticles.

	O-H (cm ⁻¹)	Si-O-Si Symmetric (cm ⁻¹)	Si-O-Si Asymmetric (cm ⁻¹)	SiO₄ Distorted (cm⁻¹)	Si-O-Bi (cm ⁻¹)	Bi-O-Bi (cm⁻¹)
BSO	3394	1380	1047	952	897,857	611
Eu _{0.5} -BSO	3429	1385	1044	950	858	574
Eu _{1.0} -BSO	3452	1424	1048	946	859	575
Eu _{1.5} -BSO	3429	1473	1048	946	860	574
Eu _{2.0} -BSO	3420	1454	1046	946	858	575

Table S2: Bond vibration of the different bonds obtained using Fourier Transformed Infrared

 spectroscopy.

Table S3: ICP-	Analysis of	of Eu _{1.5} -BSO	nanoparticles
----------------	-------------	---------------------------	---------------

Sample Information	Bismuth (Atomic Mass=208.9804)		tomic 9804)	Europium (Ator Mass=151.964		omic 64)
	ppm	mg/L	mmol/L	ppm	mg/L	mmol/L
Eu-BSO	46.404	46.404	0.222	0.491	0.491	0.003

Table S4: Elemental composition obtained using EDS for BSO and Eu-BSO nanoparticles

Sample	0	Si	Eu	Bi
BSO	68.9	9.33		21.69
Eu _{0.5} -BSO	74.13	7.82	0.11	17.42
Eu _{1.0} -BSO	76.7	7.14	0.21	15.95
Eu _{1.5} -BSO	71.91	8.82	0.33	18.94
Eu _{2.0} -BSO	73.20	7.93	0.34	18.52

Fig. S4: EDS spectra for (a) BSO (b) $Eu_{0.5}$ -BSO (c) Eu_1 -BSO (d) $Eu_{1.5}$ -BSO (inset shows the elemental composition) (e) Eu_2 -BSO (f) elemental composition of Eu_2 -BSO nanoparticles.

Fig. S5: TEM image of (a1-a2) BSO (a3) HRTEM image depicting interplaner distance corresponding to (002) plane (a4) FFT image depicting various planes for BSO (b1-b2) $Eu_{0.5}^-$ BSO nanoparticles (c1-c2) Eu_1^- BSO nanoparticles (d1-d2) $Eu_{1.5}^-$ BSO nanoparticles (e1-e2) Eu_2^- BSO nanoparticles.

Fig. S6: (a) PXRD pattern of $Sm_{1.5}$ -BSO nanoparticles depicting monoclinic phase (b) FESEM image of $Sm_{1.5}$ -BSO nanoparticles.

Fig. S7: Elemental mapping of BSO nanoparticles and Eu-BSO nanoparticles depicting the presence of Bi, Si, O, and Eu.

Fig. S8 : Nitrogen adsorption desorption isotherm of (a) BSO (b) $Eu_{0.5}$ -BSO (c) $Eu_{1.0}$ -BSO (d) $Eu_{1.5}$ -BSO (e) $Eu_{2.0}$ -BSO (f) BJH pore size distribution of BSO and Eu-BSO nanoparticles.

Table S5: Comparison of BET surface area, pore volume and pore size distribution of BSO and Eu-BSO nanoparticles.

Material information	BET Surface area (m²/g)	Pore volume (cm³/g)	Average pore diametre (nm)
BSO	27.1010 ± 0.0726	0.077821	2.22743
Eu _{0.5} -BSO	43.6855 ± 0.1466	0.105733	16.81833
Eu _{1.0} -BSO	35.6200 ± 0.1521	0.087918	3.62949
Eu _{1.5} -BSO	70.1923 ± 0.2736	0.234135	20.0214
Eu _{2.0} -BSO	17.5451 ± 0.0768	0.036943	20.0214

Fig. S9: (a) Photoluminescence of various Eu-BSO nanoparticles upon 312 nm excitation and (b) Photoluminescence of Eu³⁺ incorporated in various Eu-BSO nanoparticles upon 396 nm excitation.

Fig. S10: Photoluminescence of various Eu-BSO nanoparticles upon 465 nm excitation.

Fig. S11: (a) Absorption spectra of BSO nanoparticle and Eu-doped BSO nanoparticles (b) Kubelka-Munk plot for BSO and Eu-BSO nanoparticles.

Fig. S12: Mott Schottky plot of (a) BSO (b) $Eu_{0.5}$ -BSO (c) Eu_1 -BSO (d) $Eu_{1.5}$ -BSO (e) Eu_2 -BSO.

Fig. S13: Band edge potential of different Eu-BSO nanoparticles.

Material Information	CB(scan 1) (eV)	CB(scan 1) (eV)	CB(scan 1) (eV)	CB (Avg. + SD) (eV)	Bang gap E _g (eV)	VB (eV)
BSO	1.0	-0.98	-0.94	-0.97 ±0.02	3.62	$2.65\pm\!0.02$
Eu _{0.5} -BSO	-1.16	-0.97	-0.94	-1.02 ±0.09	3.63	2.61±0.09
Eu _{1.0} -BSO	-1.07	-1.009	-0.96	-1.01 ± 0.04	3.64	$\textbf{2.63}{\pm}~\textbf{0.04}$
Eu _{1.5} -BSO	-0.63	-0.61	-0.58	-0.61 ±0.02	3.83	3.22±0.02
Eu _{2.0} -BSO	-0.61	-0.608	-0.607	-0.61 ±0.001	3.80	3.19±0.001

Table S6: Band edge potential of various Eu-doped BSO

Fig. S14: (a) Absorption spectra for adsorption of MB dye using BSO nanoparticles (b) Fit of kinetic data to pseudo first order model for BSO nanoparticles (c) Fit of kinetic data to pseudo second order model for BSO nanoparticles d) Fit of kinetic data to intraparticle diffusion model for BSO nanoparticles (e) Absorption spectra for adsorption of MB dye using $Eu_{1.5}$ -BSO nanoparticles (f) Fit of kinetic data to pseudo first order model for $Eu_{1.5}$ -BSO nanoparticles (g) Fit of kinetic data to pseudo second order model for $Eu_{1.5}$ -BSO nanoparticles (h) Fit of kinetic data to pseudo first order model for $Eu_{1.5}$ -BSO nanoparticles (h) Fit of kinetic data to pseudo for Eu_{1.5}-BSO nanoparticles (h) Fit of kinetic data to pseudo for Eu_{1.5}-BSO nanoparticles (h) Fit of kinetic data to intraparticle diffusion model for $Eu_{1.5}$ -BSO nanoparticles (h) Fit of kinetic data to pseudo for Eu_{1.5}-BSO nanoparticles (h) Fit of kinetic data to intraparticle diffusion model for Eu_{1.5}-BSO nanoparticles (h) Fit of kinetic data to intraparticle diffusion model for Eu_{1.5}-BSO nanoparticles (h) Fit of kinetic data to intraparticle diffusion model for Eu_{1.5}-BSO nanoparticles.

Fig. S15: (a) Absorption spectra for adsorption of MB dye using BSO nanoparticles (b) Fit of kinetic data to pseudo first order model for BSO nanoparticles (c) Fit of kinetic data to pseudo second order model for BSO nanoparticles d) Fit of kinetic data to intraparticle diffusion model for BSO nanoparticles (e) Absorption spectra for adsorption of MB dye using Eu_{1.5}-BSO nanoparticles (f) Fit of kinetic data to pseudo first order model for Eu_{1.5}-BSO nanoparticles (g) Fit of kinetic data to pseudo second order model for Eu_{1.5}-BSO nanoparticles (h) Fit of kinetic data to pseudo for Eu_{1.5}-BSO nanoparticles (h) Fit of kinetic data to pseudo second order model for Eu_{1.5}-BSO nanoparticles (h) Fit of kinetic data to pseudo for Eu_{1.5}-BSO nanoparticles (h) Fit of kinetic data to intraparticle diffusion model for Eu_{1.5}-BSO nanoparticles (h) Fit of kinetic data to pseudo for Eu_{1.5}-BSO nanoparticles (h) Fit of kinetic data to intraparticle diffusion model for Eu_{1.5}-BSO nanoparticles (h) Fit of kinetic data to pseudo second order model for Eu_{1.5}-BSO nanoparticles (h) Fit of kinetic data to intraparticle diffusion model for Eu_{1.5}-BSO nanoparticles.

		Ps	eudo first	t order		Pseud	o second	order	IPD	
	q _{e,exp} (mg g ⁻¹)	q _e (mg g ⁻¹)	$k_1(min^{-1})$	R ²	q _e (mg g ⁻¹)	$\begin{array}{c} k_2 (g \; mg^{-1} \\ min^{-1}) \end{array}$	R ²	$\frac{h}{(k_2 q_{eexp}^2)}$	k ₁	R ²
BSO (10μM)	0.704	1	3.5x10 ⁻²	0.69594	0.70052	39.3x10 ⁻²	0.99743	0.2047	0.07518	0.8193
Eu _{1.5-} BSO (10µM)	2.784	1	1.7x10 ⁻²	0.91174	0.81763	6.5x10 ⁻²	0.99877	0.5038	0.25730	0.82516
BSO (50μM)	3.552	1	0.0078	0.289	3.49772	10.7x10 ⁻²	0.99651	1.3499	0.1886	0.7314
Eu _{1.5-} BSO (50µM)	8.7	8.2032	0.00941	0.93723	7.02049	4.3x10 ⁻²	0.99623	3.2546	0.4075	0.5591

Table S7: Kinetics parameters for BSO and $Eu_{1.5}$ -BSO nanoparticles for adsorption ofmethylene blue dye for different initial concentration of dye

Adsorbent	Adsorbate	q _e (mg g ⁻¹⁾	Kinetics (k ₁ /k ₂ /k _i)	Reference
Eu _{1.5} -BSO BSO	Methylene blue Methylene blue	8.7 3.5	6.5 *10 ⁻² 39.3 *10 ⁻²	This work
Magnesium Silicate/Reduced Graphene Oxide	Methylene blue	101	3.3 *10-3	1
magnetic graphene oxide	Methylene blue	256.4	5.0 *10-4	2
Magnesium silicate	Methylene blue	49.8	1.1 *10-2	3
Sewage sludge based granular activated carbon (SSGAC)	Methylene blue	27.68	1.6 *10-2	4
Moroccan clay	Methylene blue	172.8	5.0 *10-3	5
manganese nodule	Methylene blue	51.28	1.9 *10-2	6
Polymer networks	Methylene blue	#	2.9×10^{-3}	7
Cellulose	Methylene blue	108.11	1.3×10^{-5}	8
supramolecular hydrogel	Methylene blue	#	0.9 *10-4	9

Table S8: Comparison table for adsorption of pollutants by various reported materials

q_e not calculated in the paper.

Fig. S16: (a) Langmuir isotherm model fitting for BSO (b) Freundlich isotherm model fitting for BSO nanoparticle (c) Langmuir isotherm model fitting for $Eu_{1.5}$ -BSO (b) Freundlich isotherm model fitting for $Eu_{1.5}$ -BSO nanoparticle.

Table S9: Comparison table for adsorption isotherm model of methylene blue for BSO and Eu_{1.5}-BSO nanoparticle.

		Freu	undlich			Langmuir	
	experimental qmax (mg g ⁻¹)	k _F	1/n	R ²	$qm (mg g^{-1})$	b (L mg ⁻¹)	R ²
BSO	3.552	0.355532	0.96599	0.90329		0.016	-0.34226
Eu _{1.5-} BSO	8.7	4.336814	0.3729	0.96814	9.5328	1.3607	0.98727

Fig. S17: Photocatalytic degradation of different amount of methylene blue dye by $Eu_{1.5}$ -BSO nanoparticles under simulated solar light.

Fig. S18: (a) Photocatalytic degradation of rhodamine B dye (50μ M) in presence of BSO and Eu_{1.5}-BSO nanoparticles under simulated solar light. (b)Rate of photodegradation of rhodamine B dye calculated assuming first order kinetics.

Fig. S19: ESI-MS spectra of aliquots of rhodamine B collected at different points of light illumination. (a) -60 min (represents dye without catalyst) (b) 60 min (c) 120 min (d) 180 min.

Fig. S20: Possible degradation pathway of rhodamine B

Fig. S21: (a) Photocatalytic degradation of various coloured dyes in presence $Eu_{1.5}$ -BSO nanoparticles under simulated solar light. (b) Photocatalytic degradation of various colourless pollutants in presence $Eu_{1.5}$ -BSO nanoparticles under simulated solar light.

Fig. S22: Radical species trapping experiments for the photocatalytic degradation.

Table S10: Comparison of BET surface area and photocatalytic degradation using Bi_2SiO_5 nanoparticles

Material	BET	Morphology	Pollutant	Pollutant removal rate	Light	Referen
	surfac				Source	ce
	e area					
	(m²/g)					
Eu _{1.5} -BSO	70	microflower	rhodamine B	99% in 120 min	140 W Xe	This
			methylene blue	98% in 180 min	(simulated	work
			phenol	85% in 180 min	solar light)	
			methyl orange	62% in 180 min	1.5 AM	
			Chicago sky blue	55% in 180 min	Filter	
			rose bengal	90% in 180 min	-	
			tetracycline	70% in 180 min	-	
			chloremphenicol	70% in 180 min	-	
Bi ₂ SiO ₅	45	microspheres	phenol	94% in 80 min	500 W Xe	10
					(simulated	
					solar light)	
			rhodamine B	30 % in 30 min	-	
Bi ₂ SiO ₅ /BiOBr	9	nanosheets	rhodamine B	99.5% in 60 min	300 W Xe	11
2 9						
					lamp	
BiaSiOc/BiaSiOco	33	coralline	acid orange 7	90% in 30 min	100 W Hg	12
D1251057D11251020	55	corunne	acia orange /	7070 III 50 IIIII	100 101	12
			rhodamine B	90% in 30 min	lamp	
			p-chlorophenol	90% in 30 min	-	
			tetracycline	80% in 30 min	-	
Bi ₂ O ₃ /Bi ₂ SiO ₅	66	irregular	Methylene blue,	0.25 h ⁻¹	500 W Xe	13
			2.4-Dichlorophenol	0.9 h ⁻¹	lamn	
			2,4-Diemolophenol	0.18 h-l	·	
D: S:O /D:DO	16	nlata lilea	Mathylana hlua	0.1011	500 W Va	14
B128105/BIPO4	10	plate-like		9.5 * 10 ⁻⁹ min ⁻¹	500 w Xe	14
			phenol	9.5 * 10 ⁻³ min ⁻¹	lamp	
BiOBr/Bi ₂ SiO ₅	13	irregular	tetracycline	90% in 180 min	300 W Xe	15
		nanosheets				
					lamp	
Bi ₂ SiO ₅ /Bi ₄ Si ₃ O ₁₂	1	Flower	Rhodamine	90% in 30 min	300 W Xe	16
					Photocataly	
					tic chamber	
Bi ₂ SiO ₅	30	flower-like	phenol	86 % in 5h	500 W Xe	17
		microsphere			_	
					Lamp	
					(simulated	
					solar light)	
Bi ₂ SiO ₅	4-6	Nanosheets	salicylic acid	99% in 120 min	4W	18

					UV lamp	
Bi ₂ O ₃ /Bi ₂ SiO ₅	8	Irregular	bisphenol A	90% in 120 min	500 W Xe	19
					Lamp	
					(simulated	
					color light)	
					solar light)	
Pt/Bi ₂ SiO ₂	(not	Flower like	7	95.6% in 8 min	20 W	20
100125105	(1101	I lower like	/u-	75.070 m 8 mm	20 W	20
	provide		ethynylestradio		HoUV	
	d)		l(EE2)		ingev	
					la	
					m	
					р	

References

- C. X. Gui, Q. Q. Wang, S. M. Hao, J. Qu, P. P. Huang, C. Y. Cao, W. G. Song and Z. Z. Yu, ACS Appl. Mater. Interfaces, 2014, 6, 14653–14659.
- 2 Y. Guo, J. Deng, J. Zhu, X. Zhou and R. Bai, *RSC Adv.*, 2016, 6, 82523–82536.
- 3 F. Ferrero, J. Environ. Sci., 2010, 22, 467–473.
- 4 L. Liu, Y. Lin, Y. Liu, H. Zhu and Q. He, J. Chem. Eng. Data, 2013, 58, 2248–2253.
- 5 Y. El Mouzdahir, A. Elmchaouri, R. Mahboub, A. Gil and S. A. Korili, *J. Chem. Eng. Data*, 2007, **52**, 1621–1625.
- 6 K. M. Parida, S. Sahu, K. H. Reddy and P. C. Sahoo, J. Chem. Eng. Data 2007, 52, 1621–1625.
- 7 H. P. C. V. Kuringen, G. M. Eikelboom, I. K. Shishmanova, D. J. Broer and A. P. H. J. Schenning, *Adv. Funct. Mater.*, 2014, 24, 5045–5051.
- 8 L. Liu, Z. Y. Gao, X. P. Su, X. Chen, L. Jiang and J. M. Yao, ACS Sustain. Chem. Eng., 2015, 3, 432– 442.
- 9 B. O. Okesola and D. K. Smith, *Chem. Commun*, 1116, **49**, 11164.
- 10 L. Dou, J. Zhong, J. Li, J. Luo and Y. Zeng, Mater. Res. Bull., 2019, 116, 50–58.
- 11 B. Chai, J. Yan, G. Fan, G. Song and C. Wang, J. Alloys Compd., 2019, 802, 301–309.
- 12 W. Q. Li, Z. H. Wen, S. H. Tian, L. J. Shan and Y. Xiong, *Catal. Sci. Technol.*, 2018, **8**, 1051–1061.
- 13 H. Lu, Q. Hao, T. Chen, L. Zhang, D. Chen, C. Ma, W. Yao and Y. Zhu, Appl. Catal. B Environ., 2018,

237, 59–67.

- 14 D. Liu, W. Cai, Y. Wang and Y. Zhu, *Appl. Catal. B Environ.*, 2018, **236**, 205–211.
- 15 J. Wang, G. Zhang, J. Li and K. Wang, ACS Sustain. Chem. Eng., 2018, 6, 14221–14229.
- 16 K. Le Jia, J. Qu, S. M. Hao, F. An, Y. Q. Jing and Z. Z. Yu, J. Colloid Interface Sci., 2017, 506, 255– 262.
- 17 D. Liu, J. Wang, M. Zhang, Y. Liu and Y. Zhu, *Nanoscale*, 2014, 6, 15222–15227.
- 18 R. Chen, J. Bi, L. Wu, W. Wang, Z. Li and X. Fu, *Inorg. Chem.*, 2009, 48, 9072–9076.
- 19 L. Zhang, W. Wang, S. Sun, D. Jiang and E. Gao, *CrystEngComm*, 2013, **15**, 10043–10048.
- 20 Y. Chen, S. Wang, J. Liu, Y. Zhang, Y. Long, L. Li, S. Zhang, L. Wang, and F. Jiang, J. Photoch. *Photobio. A*, 2018, **382**, 111920.