1	Supporting Information: Cancer cell membrane-derived nanoparticles improve the
2	activity of gemcitabine and paclitaxel on pancreatic cancer cells and coordinate
3	immunoregulatory properties on professional antigen-presenting cells.
4 5 6 7	Edson J. Comparetti ¹ , Paula M. P. Lins ¹ , João Quitiba ¹ , Valtencir Zucolotto ¹
8	¹ Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University
9	of São Paulo, São Carlos, SP, Brazil.
10	
11	Corresponding author: Valtencir Zucolotto, Nanomedicine and Nanotoxicology Group,
12	Physics Institute of São Carlos, University of São Paulo,; São Carlos, SP, Brazil.
13 14 15 16 17 18 19	AUTHOR INFORMATION
20	Corresponding Authors
21	*E-mail: <u>zucolotto@usp.br</u>
22	*E-mail: edsoncomparetti@usp.br
23	ORCID
24	Edson J. Comparetti: 0000-0001-8390-3966
25 26 27	Paula M. P. Lins: 0000-0002-8663-4463
	Valtencir Zucolotto: 0000-0003-4307-3077
28 29	

2 Fig. S1. Image of plasma membrane nanoparticles (MNPs) extracted from the cancer cell

3 by AFM, with reconstruction of Z-axis (a), amplitude (b), and three-dimensional (3-D) (c) imagens. FEG-MEV (d-f) and TEM (g-j) analysis at different magnifications, with

4

5 scale bar at 1 um and 200 nm.

6

2 Fig.S2. Confocal microscopy of pancreatic cancer cells (PANC-1) (a and b) after 24h 3 exposed to FITC labeled nanoparticles. Incorporation of MNPs-FITC is exhibited by 4 green fluorescence in cell cytoplasm while plasma membrane was stained using wheat 5 germ agglutinin (WGA) conjugated to Texas Red, and DAPI molecules identified cell 6 nucleus. 3D confocal microscopy shows MNPs conjugated with FITC in PANC-1 7 cytoplasm and cell membrane (c-f). In hepatic cells (g and h), we observed a reduction in 8 the frequency of green signals in HEPA-RG cells.

- 9
- 10
- 11

2 Fig. S3. Cytotoxicity analysis of MNPs in pancreatic cancer cells (PANC-1) by methyl 3 tetrazolium reduction (MTT). PANC-1 (1x10⁴ cells per well) was exposed to pure MNPs 4 (a), gemcitabine encapsulated in MNPs (MNPs-GEM) (b), paclitaxel in MNPs (MNPs-5 PTX) (c), and MNPs loaded with both drugs (MNPs-GEM- PTX) (d) to verify their 6 response and to estimate the working concentration in pancreatic cancer cells (*p \leq 0.05). 7

HEPA-RG

2 Fig. S4. Cytotoxicity analysis of MNPs in healthy liver cells (HEPA-RG) by methyl 3 tetrazolium reduction (MTT). HEPA-RG ($1x10^4$ cells per well) was exposed to pure 4 MNPs (a), gemcitabine-encapsulated MNPs (MNPs-GEM) (b), paclitaxel in MNPs 5 (MNPs-PTX) (c) and MNPs encapsulated with both drugs (MNPs-GEM- PTX) (d) to 6 verify their specificity and toxicity in different concentrations of nanoparticles, 7 synthesized from the pancreatic membrane, when exposed to healthy cell line (*p \le 0.05). 8

9

1

Fig. S5. Cytotoxicity of synthetic liposomes encapsulated with gemcitabine and paclitaxel in pancreatic cancer cells (PANC-1) evaluated by methyl tetrazolium reduction assay (MTT). PANC-1 (1x10⁴ cells per well) were exposed to different concentrations of bare liposomes (a), GEM-encapsulated in liposomes (b), PTX-encapsulated in liposomes (c) and liposomes encapsulating both chemotherapeutics (d) to compare synthetic lipid nanoparticle activity with MNPs groups.

Monocytes

 1
 Image: Synthetic liposomes
 10104
 Image: PD-L1
 6189

 2
 Fig. S6. Regulatory effects of MNPs and liposomes on monocyte phenotype. Percentage

 3
 of CD14⁺ cells (a) expressing CD86 (b and c), and PD-L1 (e and f), and their respective

 4
 viability (d).

,

1 2

Fig. S7. Regulatory effects of MNPs and liposomes on DCs phenotype. Percentage of

3 CD11c⁺ cells (a) expressing CD86 (b and c), and PD-L1 (e and f), and their respective 4 viability (d).