Electronic Supplementary Information

A microporous, amino acid functionalized Zn(II)-organic framework nanoflower for selective CO₂ capture and solvent encapsulation[†]

Shradha Gandhi, Prasenjit Das and Sanjay K Mandal*

Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, INDIA

Corresponding Author

*E-mail: sanjaymandal@iisermohali.ac.in

Table of Contents

ltem(s)	Description	Page No.
Scheme S1	Synthesis of H ₃ (D-2,4-cbs)	S3
Fig. S1-S4	Characterization of H ₃ (D-2,4-cbs): FTIR spectrum, TGA, ¹ H NMR and	S4-S5
	Mass spectra	
Fig. S5-S10	Characterization of Zn-CBS : FTIR spectrum, Solid-state reflectance	S6-S8
	spectrum, TGA, PXRD pattern, 2D WAX map and EDX analysis	
Fig. S11	Analysis of sorption isotherms and N ₂ sorption isotherm of Zn-CBS	S9
Fig. S12	PXRD patterns of before and after gas adsorption of Zn-CBS	\$10
	Calculation of Isosteric heats of adsorption	S11
Table S1	Literature survey of BET surface area, H_2 , N_2 , CO_2 and CH_4 uptake,	S12-S13
	isosteric neat of adsorption for N ₂ , CO ₂ and CH ₄	
Fig. S13-S21	CO_2 selectivity over N_2 and CH_4 : Dual-site Langmuir-Freundlich plots	S14-S19
Table S2	Summary of DSLF model fit	S20
Table S3	Literature survey for the selectivity of CO_2/N_2 and CO_2/CH_4	S21
	DFT calculation and CBMC molecular simulation	S22
Table S4	Encapsulation of solvents by Zn-CBS	S23

Scheme S1. Synthesis of $H_3(D-2,4-cbs)$.

Fig. S1 FTIR spectrum of H₃(D-2,4-cbs).

Fig. S2 TGA profile of $H_3(D-2,4-cbs)$.

Fig. S3 ¹H NMR spectrum of $H_3(D-2,4-cbs)$ in D_2O .

Fig. S4 HRMS of H₃(D-2,4-cbs).

Fig. S5 FTIR spectrum of Zn-CBS.

Fig. S6 Solid State diffuse reflectance spectrum of Zn-CBS.

Fig. S7 TGA profile of Zn-CBS.

Fig. S8 PXRD pattern of Zn-CBS.

Fig. S9 2D WAX Map of Zn-CBS.

10µn

Electron Image 1

Element Weight (%) Atomic (%) СК 33.5 47.5 ΝK 15.4 18.8 25.5 ОК 27.1 6.6 Zn K 25.6 Total 100

Fig. S10 EDX analysis of Zn-CBS.

Analysis of Sorption Isotherm

For this analysis, the BET equation is considered:

$$v = cv_m x / (1-x)[1 + (c-1)x]$$

where, $x = p/p_0$, vis the volume of nitrogen adsorbed per gram of **Zn-CBS** at STP, v_m is the monolayer capacity, and c is related to the heat of adsorption. It is noted that the line is fit to the low pressure isotherm data with range 0.05 < x < 0.3.

The surface area is then calculated from: $A=\nu_m\sigma_0N_{\text{av}}$

where, σ_0 is the cross-sectional area of nitrogen at liquid density (16.2 Å) and N_{av} is Avogadro's number.

These calculations are done through the "BET analysis" and "Langmuir analysis" function embedded in the Belsorp Adsorption/Desorption Data Analysis software version 6.3.1.0.

Pore size was calculated using microporous (MP) analysis method embedded in the Belsorp Adsorption/Desorption Data Analysis software.

Fig. S11 N₂ sorption isotherms of Zn-CBS at 263 K, 273 K and 298 K.

Fig. S12 PXRD pattern of before and after gas adsorption.

Calculation of Isosteric Heats of Adsorption:

Using the Clausius-Clapeyron equation

Isosteric heats of adsorption (Q_{st}) were calculated using the Clausius-Clapeyron equation based on pure-component isotherms collected at two different temperatures of 273 K and 298 K. Q_{st} is defined as:

$$Q_{st} = -R(\partial lnx/\partial(1/T))y$$

where, x is the pressure, T is the temperature, R is the gas constant and y is the adsorption amount.

These calculations are done through the "Heat of Adsorption" function embedded in the Belsorp Adsorption/Desorption Data Analysis software version 6.3.1.0.

Table S1. Comparison of BET surface area, H₂, N₂, CO₂ and CH₄ uptake, isosteric heat of adsorption for N₂, CO₂ and CH₄ with literature reports.

Complex	BET surface area (m ² g ⁻¹)	H ₂ uptake at	N ₂ uptake		CO ₂ uptake			CH₄ uptake			Qst N2	Qst CO ₂	Qst CH₄	Ref.		
		77 K	298 K	273 K	263 K	298 K	273 K	263 K	195 К	298 K	273 K	263 K				
Zn-CBS	282	64	4.1	6.6	8.3	38.7	47.5	49.3	85.9	15.1	21.2	24.8	0.7	35	51.8	This work
{[Cd(ATAIA)] [.] 4H ₂ O}n	62	20.12				17.1	24.3							37.5		ACS Apl. Mat. Int., 2018 , 10 , 25360-25371
TEA@bio-MOF-1 TMA@bio-MOF-1	1220						4.16 mmol/ g							26.5		JACS, 2010, 132 , 5578
	1460						4.446 mmol/ g							23.9		
CPF-13		223.9				81	116							28.3		Chem. Mater., 2012 , 24 , 2624- 2626
JUC-141	1057		6.76	13.9		51.3	79.9			21.8	37.8		27.2	27.8	22.7	Inorg. chem., 2017, 56 , 6938- 6942
MAF-2						19	49							27		<i>JACS,</i> 2009, 131 , 5516-5521
[Zn(atz)2]	1014		29.4	50.1		99	140							26	19.5	Inorg. Chem. 2012 , 51 , 9950- 9955

Zn2(BDC)2(DABCO)	1725			13.7			5.3			20		Microporous and mesoporous material, 2010, 132 , 305
((CH ₃) ₂ NH ₂) _{1.5} [Zn ₃ L ₂ (HCOO) _{1.5}]xDMF	153.4		8.93		57.5			2.48				J. Mater. Chem. A, 2014, 2 , 17771-17778
SNU-150, SNU-77S, SNU-151, and SNU-100	1563, 3670, 1852	0.546, 0.40, 0.519, and 0.624 (wt%)		6.09, 3.94, 14.1, and 14.1	12.0, 8.21, 22.2, and 19.9	78.6, 169, 67.8, and 45.2	0.859, 0.62, 1.24, and 1.41	1.29, 1.20, 2.00, and 2.56			12.8, 14.3, 18.2, and 26.5	Chem. Eur. J., 2013, 19 , 17432-17438
IITKGP-5	366	4	5.5	49	56.4		13.6	17	4.6	22.6	14.8	Dalton Trans., 2017, 46 , 15280-15286
IITKGP-6	83.4	4.1	6.2	37.4	50.6		9.2	13.8	5.1	23	18.4	Inorg. Chem., 2017, 56 , 13991-13997
IISERP-MOF20	945			3.5		9 mmol/g				26		Inorg. Chem., 2018, 57 , 5267- 5272

CO₂ selectivity over N₂ and CH4 - IAST selectivity calculation for CO₂/N₂ and CO₂/CH₄ mixture:

Gas selectivity for mixture of CO₂/N₂ (15:85) and CO₂/CH₄ (50:50) at different temperature were calculated based on the ideal absorbed solution theory (IAST) proposed by Myers and Prausnitz.^{S1} In order to calculate the selective sorption ability of **Zn-CBS** towards the separation of binary mixed gases, the parameter fitted from the single component CO₂ and N₂ and CH₄ adsorption based on the Dual-Site Langmuir-Freundlich (DSLF) model and different parameter were used given below.

$$\mathbf{y} = \frac{q_{m1}b_1p^{\frac{1}{n1}}}{1+b_1p^{\frac{1}{n1}}} + \frac{q_{m2}b_2p^{\frac{1}{n2}}}{1+b_2p^{\frac{1}{n2}}}$$

where, p is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa); y is the adsorbed amount per mass of adsorbent (mmol/g), qm1 and qm2 are the saturation capacities of sites 1 and 2 (mmol/g); b1 and b2 are the affinity coefficients of sites 1 and 2, n1 and n2 represent the deviation from an ideal homogeneous surface.

The predicted adsorption selectivity is defined as

$$\mathbf{S} = \left(\frac{\frac{x1}{y1}}{\frac{x2}{y2}}\right)$$

where, xi and yi are the mole fractions of component 1 (i = 1, 2) in the adsorbed and bulk phases, respectively. The IAST calculation was carried out for a binary mixture containing 15% CO₂ (y1) and 85% N₂ (y2) and 50% CO₂ (y1) and 50% CH₄ (y2), which is typical for flue gases and landfill gases, respectively.

(S1) A. L. Myers and J. M. Prausnitz, AIChE J., 1965, 11, 121-127.

Fig. S13 Dual-site Langmuir-Freundlich fitted (red line) for CO₂ (blue circle) isotherm measure at 298 K.

Fig. S14 Dual-site Langmuir-Freundlich fitted (red line) for CH₄ (green circle) isotherm measure at 298 K.

Fig. S15 Dual-site Langmuir-Freundlich fitted (red line) for N₂ (violet circle) isotherm measure at 298 K.

Fig. S16 Dual-site Langmuir-Freundlich fitted (red line) for CO₂ (blue circle) isotherm measure at 273 K.

Fig. S17 Dual-site Langmuir-Freundlich fitted (red line) for CH₄ (green circle) isotherm measure at 273 K.

Fig. S18 Dual-site Langmuir-Freundlich fitted (red line) for N₂ (violet circle) isotherm measure at 273 K.

Fig. S20 Dual-site Langmuir-Freundlich fitted (red line) for CH₄ (green circle) isotherm measure at 263 K.

Fig. S21 Dual-site Langmuir-Freundlich fitted (red line) for N₂ (violet circle) isotherm measure at 263 K.

Parameter						
\rightarrow	\mathbf{q}_{m1}	b_1	n_1	q_{m2}	b ₂	n ₂
	(mmol/g)	(1/kPa)		(mmol/g)	(1/kPa)	
Adsorbates						
CH ₄ (298 K)	0.02332	2.2068E-17	0.1196	1.27127	0.00931	096809
CO ₂ (298 K)	0.14471	1.51329E-6	0.35411	1.98371	0.04647	0.97357
N ₂ (298 K)	0.12043	0.01302	0.89336	0.59041	1.05795E-6	0.38817
CH ₄ (273 K)	0.01047	3.41124E-30	0.06833	1.34749	0.02251	0.98999
CO ₂ (273 K)	1.23464	0.01395	1.28967	1.75891	0.14174	0.84322
N ₂ (273 K)	0.06844	0.04982	092441	0.30157	4.88965E-4	0.57555
CH ₄ (263 K)	0.03442	0.0135	0.28901	1.39057	0.02733	0.98233
CO ₂ (263 K)	7.637	0.0021	1.45978	1.87787	0.30022	0.89763
N ₂ (263 K)	0.08555	0.04982	0.92441	0.37696	4.88965E-4	0.57555

Table S2. Summary of parameters for the DSLF isotherm model.

Complex	Selectiv	vity CO ₂ /N	2 uptake	Select	ivity CO ₂ /C	H₄uptake	References
	298 K	273 K	263 K	298 K	273 K	263 K	-
Zn-CBS	408	916	1832	12.2	17.2	24.5	This work
JUC-141	27.6	21.6		8.72	4.20		Inorg. Chem., 2017 , 56 , 6938-6942
SNU-150, SNU-77S, SNU-151, and SNU-100	5.4, 30, and 26.5			2.26, 7.20			Chem. Eur. J, 2013, 19 , 17432–17438
[Zn(atz)2]	225	403		5.8	7.5		Inorg. Chem., 2012, 51 , 9950-9955
IITKGP-5	147.8	435.5		23.8	151.6		Dalton Trans., 2017, 46 , 15280–15286
IITKGP-6	42.8	51.3		5.1	36		Inorg. Chem., 2017, 56 , 13991-13997
IISERP-MOF20	250	220					Inorg. Chem., 2018, 57 , 5267-5272
MAF-66 UTSA-49a	225 93.5	403 193.7		5.8 33.7	7.5 34.8		<i>Chem. Commun.,</i> 2014, 50 , 12101-12104
(Me ₂ NH ₂) ₂ [(In ₂ X)] [.] 9DMF [.] 5H ₂ O		250		5.6	6.4		Inorg. Chem., 2013, 52 , 3127-3132
NOTT-202a	4.3	26.7		1.4	2.9		Nat. Mater., 2012, 11 , 710-716
UTSA-15a, UTSA-20a, UTSA-25a, UTSA-33a, and UTSA-34a				14.2, 8.3, 9.4, 7.0, and 5.1			Nat. Commun., 2012, 3 , 954-963

Table S3. Comparison for the selectivity of CO_2/N_2 and CO_2/CH_4 with literature reports.

Density Functional Theory (DFT) and Configurational Bias Monte Carlo (CBMC) molecular simulation:

Ligand H₃(D-2,4-cbs) was optimized in DFT and put in a $(1 \times 1 \times 1)$ cell for further calculation. The simulation boxes representing the ligand consist of $(1 \times 1 \times 1)$ unit cells for CO₂, N₂ and CH₄ (optimized). All the calculations were perfomed at 298 K at fixed pressure 1 bar. Interatomic interactions were modeled with standard Lennard-Jones potential and Columbic potentials. Lorentz-Berthelot mixing rules were employed to compute the Lennard-Jones parameters between unlike atom types. The pairwise interactions between host and guest atoms of the particular force field were analysed by utilizing the non-bonding parameter. The long-range part of electrostatic interactions was handled using the Ewald summation technique with a relative precision of 10⁻⁶. Periodic boundary conditions were applied in all three dimensions. For each state point, the CBMC simulation consists of 1 x 10⁷ steps to guarantee equilibration, followed by 1 x 10⁷ steps to sample the desired thermodynamic properties.

Solvent	Found (wt%)	Calculated (wt%)	Number of guest molecules
Acetonitrile	15.0	14.6	3.75
Ethanol	15.0	15.2	3.5
Methanol	8.9	8.9	2.75
Tetrahydrofuran	12.5	12.3	1.75
Toluene	18.2	17.7	2.1
p-Xylene	14.7	15.0	1.5

Table S4. Calculation of number of molecules absorbed per formula unit of Zn-CBS based on TGA.