Supporting information for

DES-N-Doped Oxygenated Carbon Dots Colloidal Solutions for Light

Harvesting and Bio-imaging Applications

Krishnaiah Damarla,^{†,§} Sanjay Mehra,^{†,§} Tejwant Singh Kang,[‡] Sonam Yadav,^{†,§} Avinash Mishra^{†,§} and Arvind Kumar^{†,§,*}

[†]CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg Bhavnagar-364002, Gujarat, India.

[§]Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India [‡]Department of Chemistry, UGC-centre for Advance Studies – II, Guru Nanak Dev University, Amritsar, 143005, India.

Corresponding Author e-mail: mailme_arvind@yahoo.com ; arvind@csmcri.res.in Tel.: +91-

278-2567039. Fax: +91-278-2567562.

Number of pages: 14

Number of figures: 11

Number of tables: 01

Table of contents

Fig. S1 ¹ H NMR spectra of [Cho][Ola].					
Fig. S2 Plot shows the Surface tension of [Cho][Ola] in aqueous system.					
Fig. S3 Plot shows the 2D NMR NOESY spectra of [Cho][Ola] in choline					
chloride-ethylene glycol (1:2 mole ratio) deep eutectic solvent (DES).					
Fig. S4 (a) FT-IR spectra of (A) [Cho][Ola]-DES colloidal solutions and (B) N					
doped CDs-[Cho][Ola] -DES colloidal solutions, and (b) Raman spectra of N					
doped CDs-[Cho][Ola] -DES colloidal solutions.					
Fig. S5 Fluorescence spectra, of N doped CDs-[Cho][Ola]-DES colloidal solution.					
Fig. S6 Photographs of blue emission from N doped CDs dispersed in toluene.					
Fig. S7 TrPL life time IRF spectra.					
Table S1 Comparison of quantum yields of CDs vis. a vis/ method of preparation.					
Fig. S8 Fluorescence microscopic images of <i>Escherichia coli</i> with the N-doped					
carbon dots under and through green filter.					
Fig. S9 Fluorescence microscopic images of <i>Bacillus cereus</i> , labeled with the N-					
doped carbon dots under and through green filter.					
Fig. S10 Fluorescence microscopic images of Vibrio owensii, labeled with the N-					
doped carbon dots under and through green filter.					
Fig. S11 Fluorescence microscopic images of <i>Vibrio alginolyticus</i> of OD ₆₀₀ 0.6,					
labeled with the N-doped carbon dots under and through green filter.					

Fig. S1 ¹H NMR spectra of [Cho][Ola].

Choline Oleate, [*Cho*][*Ola*]: ¹H-NMR; 600MHz, DMSO-d6, $\delta_{\rm H}$) 0.9 (t, 3H), 1.3 (m, 20H), 1.4 (q, 2H), 1.9 (t, 2H), 2.0 (q, 4H), 3.1 (s, 9H), 3.4 (t, 2H), 3.9 (m, 3H), 5.3 (d, 2H); ESI-MS: [C₅H₁₄NO]⁺ m/z:104.10, [C₁₈H₃₃O₂]⁻ m/z = 285.6.

Fig. S2 Plot shows the Surface tension of [Cho][Ola] in aqueous system.

Fig. S3 2D NMR NOESY spectra spectra of [Cho][Ola] in choline chlorideethylene glycol (1:2 mole ratio) deep eutectic solvent (DES).

Fig. S4 (a) FT-IR spectra of (A) [Cho][Ola]-DES colloidal solutions and (B) N doped CDs-[Cho][Ola] -DES colloidal solutions, and (b) Raman spectra of N doped CDs-[Cho][Ola] -DES colloidal solutions.

000

Fig. S5 Fluorescence spectra, of N doped CDs-[Cho][Ola]-DES colloidal solution.

Fig. S6 Photographs of blue emission from N doped CDs dispersed in toluene.

Fig. S7 TrPL life time IRF spectra.

Quantum efficiency calculations: Quantum yield (QY) of N doped CDs-[Cho][Ola] -DES colloidal solutions was calculated using Fluorescein dye as a standard having, QY = 0.79 (79%). We prepared 0.1M NaOH solution of dye to measure the QY and it was calculated using following equation:

$$\phi = \phi_R \times \frac{I}{I_R} \times \frac{A_R}{A} \times \frac{\eta^2}{\eta_R^2}$$

Where,

- ϕ, ϕ_R = Quantum yield of sample and reference respectively,
- *I*, I_R = Emission of the sample and reference respectively, *A*, A_R = optical density of the sample and reference respectively, η^2 , η^2_R = refractive index of the sample and reference respectively.

S.No.	Type of material	Synthetic route	Quantum yield	Application	Reference/s
1	DES-N-CDs micelles	100°C	0.82	Light harvesting and bioimaging	Present study
2	N-CDs	Microwave @ 160 °C	0.93	pH response	1
3	N-CDs	Autoclave at 180 °C	0.47	Light harvesting	2
4	N-CDs	autoclave @ 180 °C	0.31	bioimaging	3
5	N-CDs	Autoclave at 200 °C	0.16	bioimaging	4
6	N-CDs	Microwave @ 180 °C	0.14	bioimaging	5
7	Co-doped CDs	Autoclave at 200 °C	0.73	Light harvesting	6
8	S-doped CDs	240 °C	0.67	Fe(III) ion detection	7
9	Silica functionalised CDs	240 °C	0.47	bioimaging	8
10	Polyamine doped CDs	< 200 °C	0.42	chemical sensing	9

Table S1. Comparison of quantum yields of CDs vis. a vis. method of preparation.

Fig. S8 Fluorescence microscopic images of *Escherichia coli* with the N-doped carbon dots under and through green filter.

Fig. S9 Fluorescence microscopic images of *Bacillus cereus*, labeled with the N-doped carbon dots under and through green filter.

Fig. S10 Fluorescence microscopic images of *Vibrio owensii*, labeled with the N-doped carbon dots under and through green filter.

Fig. S11 Fluorescence microscopic images of *Vibrio alginolyticus* of OD_{600} 0.6, labeled with the N-doped carbon dots under and through green filter.

References:

- 1. C. Zheng, X. An and J. Gong, RSC Adv., 2015, 5, 32319–32322.
- M. Li, C. Yu, C. Hu, W. Yang, C. Zhao, S. Wang, M. Zhang, J. Zhao, X. Wang, J. Qiu, *Chem. Eng. J.*, 2017, **320**, 570-575.
- H. Zhang, Y. Chen, M. Liang, L. Xu, S. Qi, H. Chen, and X. Chen, *Anal. Chem.* 2014, 86, 19, 9846–9852.
- Y. Song, C. Zhu, J. Song, H. Li, D. Du, and Y. Lin, ACS Appl. Mater. Interfaces 2017, 9, 8, 7399–7405

- T. N. J. I. Edisona, R. Atchudana, M. G. Sethuraman, J. -J. Shima and Y. R. Leea, J. Photochem. Photobiol. B, 2016, 161, 154-161.
- Y. Dong, H. Pang, H. B. Yang, C. Guo, J. Shao, Y. Chi, C. M. Li and T. Yu, *Angew. Chem. Int. Ed.* 2013, **52(30)**, 7800–7804.
- 7. Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, Carbon 2013, 60, 421-428.
- M. J. Krysmann, A. Kelarakis, P. Dallas, E. P. Giannelis, J. Am. Chem.Soc. 2012, 134(2), 747–750.
- X. Li, S. Zhang, S. A. Kulinich, Y. Liu, H. Zeng, *Sci Rep.* 2014, 4(1), 4976.