Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2020 ## Tailored N-doped porous carbon via a MOF assembly process for highperformance CO₂ uptake Fangyuan Gai, ^{acd} Dongying Zhu, ^a Yunhuan Wu, ^a Xiaogang Zhao, ^{*c} Changhai Liang, ^b Zhenguo liu^d Yunling Liu^c and Tonghua Wang*^b - ^a Advanced Institute of Materials Science, School of Chemistry and biology, Changchun University of Technology, Changchun 130012, PR. China. Electronic address: gaifangyuan@dlut.edu.cn - b. State Key Laboratory of Fine Chemicals, Carbon Research Laboratory, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China. Electronic address: wangth@dlut.edu.cn - ^c College of Chemistry, Jilin University, Changchun 130012, China. - d. Research institute of Jilin petrochemical Co.Ltd., Petro. China, Jilin 132021, China Scheme S1. The synthesis and the yield of 3D NPC Fig. S1 XRD of ZIF-8 and ZIF-8-PP composites Fig. S2 (A), (B) XPS of NPC-800-4 and (C) XPS of ZIF-8-PP composites Fig.S3 The N₂ adsorption and pore size distribution of NPC and ZIF-8-PP composite Fig. S4 The CO₂ capture of carbon derived from ZIF-8, PP-COOH and the mixture of ZIF-8 and PP-COOH at 800 °C Fig. S5 The TPD of NPC-700-4 Fig. S6 8 cycles of CO₂ adsorption—desorption on NPC-800-4 at 25 °C