Supporting information

Structure-property relationships in organic battery anode materials: exploring redox reactions in crystalline Na- and Li-benzene diacrylate using combined crystallography and density functional theory calculations

Rodrigo P. Carvalho,^{a,b} Cleber F. N. Marchiori,^b Viorica-Alina Oltean,^b Stéven Renault,^c Tom Willhammar,^d Cesar Pay Gómez,^b C. Moyses Araujo,^a and Daniel Brandell^b

^a Department of Physics and Astronomy, Materials Theory Division, Uppsala University, 751 20, Uppsala, Sweden

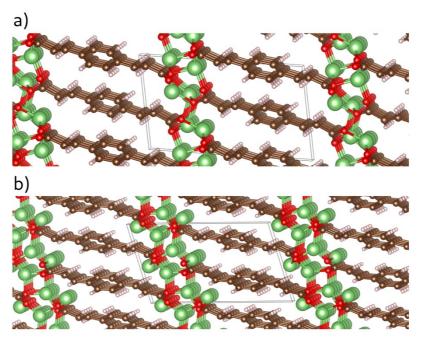
^b Department of Chemistry- Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden

^c Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France

^d Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden

 Table S1 Space group of all crystal structures as theoretically predicted.

	Na ₂ BDA	Li ₂ BDA
Pristine	$P2_1/c$	$P2_1/c$
1 st ion insertion	P1	Pl
2 nd ion insertion	$P2_1/c$	PĪ


Table S2 Lattice parameters of all crystal structures as theoretically predicted.

	Na ₂ BDA	Na ₃ BDA	Na ₄ BDA	Li ₂ BDA	Li ₃ BDA	Li ₄ BDA
a (Å)	13.77	15.02	14.03	11.11	13.03	13.33
b (Å)	5.34	5.39	5.11	5.36	5.13	5.28
c (Å)	6.89	6.72	8.09	8.28	7.57	7.59
α (deg)	90.01	90.01	90.05	89.97	86.84	86.40
β (deg)	97.31	78.05	76.64	90.05	100.15	107.03
Y (deg)	89.95	96.09	90.05	87.15	86.80	101.05

Table S3 Comparison of experimental data between the PXRD-Na₂BDA and SCXRD-Li₂BDA.

Parameter	Na ₂ BDA	Li ₂ BDA
Molar mass (g/mol)	262.02	230.07
Temp of measurement (K)	293	293
Space group	$P 2_{1}/c$	$P 2_{1}/c$
<i>a</i> axis (Å)	14.53	13.75
Cell volume (Å ³)	526.35	1170.99
Z	2	4
Calc. density (g/cm ³)	1.65429	1.39586
Crystal colour	white	white

The predicted lithiated phases for the Li₂BDA compound are presented on the Figure S1.

Figure S1 The predicted crystal structure for the lithiated phases a) Li_3BDA and b) Li_4BDA .

3D electron diffraction

The sample was crushed in an agate mortar, dispersed in absolute ethanol. A droplet of the suspension was transferred onto a copper grid covered by a holey carbon film. The 3D electron diffraction data were collected using a JEOL JEM-2100 transmission electron microscope (TEM) operated at an accelerating voltage of 200 kV. The data were collected by continuously tilting the goniometer with a tilt speed of 0.28 °/s. During tilting the crystal was tracked by sequential defocusing of the intermediate lens using the software Instamatic.¹ The data were collected using X-ray Detector Software (XDS)². The structure was solved using the software SHELXT³, the positions of all non-hydrogen atoms were directly obtained with reasonable geometries. A least-squares refinement was performed in SHELXL⁴ using atomic scattering factors for electrons extracted from SIR2014⁵. The refinement converged with an R1 of 35% without the use of restraints. Details regarding the data and structure refinement can be found in Table S4.

Crystal system	Monoclinic
Space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)
a, Å	14.49
b <i>,</i> Å	5.50
c, Å	7.21
α, °	90
β, °	101.1
γ, °	90
Volume, Å ³	563.9
λ <i>,</i> Å	0.0251
Exposure time per frame (s)	0.6
Tilt range, °	-58.3 – +62.3
Resolution, Å	0.9
Completeness, %	77.2
R _{int}	0.1142
R1	0.3535
No. of symmetry	617
independent reflections	
Restraints	0

Table S4. Details of the electron diffraction data and refinement.

References

1 M. O. Cichocka, J. Ångström, B. Wang, X. Zou and S. Smeets, *J Appl Cryst*, , DOI:10.1107/S1600576718015145.

2 W. Kabsch, Acta Cryst D, Acta Cryst Sect D, Acta Crystallogr D, Acta Crystallogr Sect D, Acta Crystallogr D Biol Crystallogr, Acta Crystallogr Sect D Biol Crystallogr, 2010, **66**, 125–132.

3 G. M. Sheldrick, Acta Cryst A, 2015, 71, 3–8.

4 G. M. Sheldrick, *Acta Cryst A, Acta Cryst Sect A, Acta Crystallogr A, Acta Crystallogr Sect A, Acta Crystallogr A Found Crystallogr, Acta Crystallogr Sect A Found Crystallogr, 2008*, **64**, 112–122.

5 M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone and G. Polidori, *Journal of Applied Crystallography*, 2015, **48**, 306–309.