Electric Supporting Information

Asymmetrical benzo[a]-fused N_2O_2 -boron-chelated BODIPYs as red to near-infrared absorbing chromophores; synthesis, characteristic and device applications for opto-electronics

Yuji Kubo,*a Toshiki Nozawa,a Kentaro Maedab and Yuta Hashimotob

^aDepartment of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397 ^bNippon Kayaku Co., Ltd., 31-12, Shimo 3-Chome, Kita-ku, Tokyo, 115-8588

Table of contents

Synthesis of 8 and 9b	S-2 -	- S-3
Fig. S1 Dihedral angles		. S-4
Fig. S2 A pair of the enantiomers of 2		. S-4
Fig. S3 Fluorescence decay profiles of 1~5		. S-4
Fig. S4 Photophysical properties of the dyes in various solvents	S-5 –	S-6
Table S1. Calculated values of for 1		S-6
Fig. S5 The frontier molecular orbitals of the optimized structures of 1	S-6 –	S-7
Table S2. Calculated values for 2.		S-7
Fig. S6 The frontier molecular orbitals of the optimized structures of 2		S-8
Table S3. Calculated values for 3.	S-8 –	S-9
Fig. S7 The frontier molecular orbitals of the optimized structures of 3		. S-9
Table S4. Calculated values for 4.		S-10
Fig. S8 The frontier molecular orbitals of the optimized structures of 4	S-10 –	S-11
Table S5. Calculated values for 5.		S-11
Fig. S9 The frontier molecular orbitals of the optimized structures of 5		S-11
Fig. S10 Chromatogram of the enantiomeric separation of 2		S-12
Fig. S11 Calculated CD spectrum of <i>P</i> -isomer of 2		S-12
Fig. S12 DSC (a) and TGA (b) plots of 2		S-13
Fig. S13 Photoelectron spectroscopic analysis of film 2		S-13
Fig. S14 - Fig. S97 Spectral data of structure assignment of the dyes	S-14 –	S-84
Single crystal X-ray diffraction study for 2	S-85 – S	-108
Table S6. Atom coordinates and absolute energy levels for 1 optimized in the S_0 state	S-109 – S	-110
Table S7. Atom coordinates and absolute energy levels for 2 optimized in the S_0 state	S-111 – S	-112
Table S8. Atom coordinates and absolute energy levels for 3 optimized in the S_0 state	S-113 – S	-114
Table S9. Atom coordinates and absolute energy levels for 4 optimized in the S_0 state	S-115 – S	-116
Table S10. Atom coordinates and absolute energy levels for 5 optimized in the S ₀ state		-118

Synthesis

Scheme S1. Synthetic path of 8 and 9b.

3-(2-Methoxyphenyl)-1-formylisoindole (8a): 1-(3-Bromo-1H-isoindol-1-ylidene)-*N*,*N*-dimethyl methanamine **6** (8.50 g, 33.9 mmol) and (2-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (8.30 g, 35.5 mmol) were dissolved in 1,4-dioxane (500 mL) and the mixture was degassed by freeze-pump-thaw cycles 3 times. After adding PdCl₂ (dppf) (1.39 g, 1.70 mmol) and 4M KOH degassed by freeze-pump-thaw cycles, the resultant mixture was stirred overnight at 90 °C. After celite filtration, the reaction solution was evaporated and extracted with CHCl₃. The organic phase was chromatographed on silica gel (Wakogel C-300) using EtOAc:CH₂Cl₂ (1:1 v/v) as an eluent to afford 8.02 g of **8a** in 74% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 11.26 (1H, s), 9.94 (1H, s), 8.06 (1H, d, J = 8.60 Hz), 8.03 – 7.99 (2H, m), 7.44 – 7.38 (2H, m), 7.27 – 7.23 (1H, m), 7.16 (1H, t, J = 7.54 Hz), 7.11 (1H, d, J = 8.36 Hz), 4.02 (3H, s). FAB-MS: m/z = 251 [M⁺] and 251 [M⁺]⁺.

3-(3-Methoxythiophen-2-yl)-1-formylisoindole (8b): Compound **8b** was synthesized in a similar manner as **8a** using 1-(3-bromo-1*H*-isoindol-1-ylidene)-*N*,*N*-dimethyl methanamine **6** (0.167 g, 0.666 mmol), 4,4,5,5-Tetramethyl-2-(3-methoxy-2-thienyl)-1,3,2-dioxaborolan (0.168 g, 0.698 mmol). 0.108 g of 8b was obtained in 63% yield. ¹H NMR (500MHz, CDCl₃) : δ (ppm) = 11.32 (1H, s), 9.88 (1H, s), 8.09 (1H, d, *J* = 8.60 Hz), 7.98 (1H, d, *J* = 8.40 Hz,), 7.40 (1H, t, *J* = 7.75 Hz), 7.38 (1H, d, *J* = 5.60 Hz), 7.27 – 7.24 (1H, m), 7.02 (1H, d, *J* = 5.45 Hz), 4.15 (s, 3H). FAB-MS: m/z = 257[M]⁺, 258[M +H]⁺.

4,4-Dimethoxy-1-(3-methoxythiophen-2-yl)-3-phenylbutan-1-one (11) To a solution of 1-(3-methoxythiophen-2-yl)-4-nitro-3-phenylbutan-1-one (4.95 g, 17.0 mmol) in MeOH (172mL) /THF (344 mL) was added KOH (4.84 g, 86.2 mmol) at room temperature and the resultant solution was stirred for 1 h. After adding 36N H₂SO₄ (32 mL) in MeOH (172 mL) under an icy condition, the mixture was then stirred for 1 h at room temperature. The resultant solution was poured into iced water, neutrlized with 4N NaOH aqueous solution, evaporated by half, and then

extracted with CH₂Cl₂. The organic layer was washed with water, dried with Na₂SO₄ and evaporated. The residue was then chromatographed on silica gel (Wakogel C300) using CH₂Cl₂ as an eluent to afford 3.44g of **11** in 63% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.45 (1H, d, J = 5.60 Hz), 7.32 (2H, dt, J = 8.25 and 1.57 Hz), 7.28 – 7.25 (2H, m), 7.17 (1H, tt, J = 7.11 and 1.67 Hz), 6.82 (1H, d, J = 5.52 Hz), 4.53 (1H, d, J = 6.20 Hz), 3.74 (1H, dt, J = 5.84 and 5.81 Hz), 3.42–3.31 (2H, m), 3.36 (s, 3H), 3.29 (s, 3H). FABMS: m/z = 289 [M–OMe]⁺.

2-(3-Methoxythiophen-2-yl)-4-phenyl-1*H***-pyrrole (9b)** The mixture of **11** (0.564 g, 1.76 mmol), NH₄OAc (0.686 g, 8.90 mmol) and AcOH (25 mL) was heated at 100°C for 1 h. After adding icy water, the solution was neutralized with 4M NaOH aq., extracted with CH₂Cl₂ and washed with water. The residue was chromatographed on silica gel (Wakogel C-300) using CH₂Cl₂ as an eluent (AcOEt/Hexane = 1/4 v/v) to afford 9b in 65% yield. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 9.39 (1H, s), 7.55 (2H, dd, J = 8.35 and 1.18 Hz), 7.33 (2H, tt, J = 7.73 and 1.58 Hz), 7.17 (1H, tt, J = 7.35 and 1.23 Hz), 7.08 (1H, dd, J = 2.56 and 1.78 Hz), 7.00 (1H, d, J = 5.44 Hz), 6.86 (1H, d, J = 5.44 Hz), 6.59 (1H, dd, J = 2.64 and 1.70 Hz), 3.98 (3H, s) . FAB-MS: m/z = 255 [M]⁺.

Fig. S1 Dihedral angles of 3-benzo[1,3,2]oxazaborinine (a) and 3- thieno[1,3,2]oxazaborinine units (b)

Fig. S2 A pair of the enantiomers of 2.

Fig. S3 (a) Fluorescence decay profiles of $1\sim4$ (10 μ M) in THF at 25.0°C. Excited with LED light at 630 nm. (b) Fluorescence decay profiles of 5 (10 μ M) in THF at 25.0°C, which was monitored at 625 nm. Excited with LED light at 590 nm.

Fig. S4 Photophysical properties of the dyes (1 μ M) in various solvents; absorption of 1 (a), fluorescence of 1 (b), absorption of 2 (c), fluorescence of 2 (d), absorption of 3 (e), fluorescence of 3 (f), absorption of 4 (g), fluorescence of 4 (h), absorption of 5 (i) and fluorescence of 5 (j).

Table S1. Calculated values of excited wavelength (λ_{calcd}), oscillator strength (*f*) and molecular orbital (MO) transition assignment for selected transition energies for **1**. The reported transitions have oscillator strength (*f*) more than 0.1.

Dye	State	λ (calcd.) / nm	<i>f</i> / a.u.	MO transition assignment ^a
1	$S_0 \to S_1$	534	0.5030	HOMO \rightarrow LUMO (97%)
	$S_0 \to S_2$	360	0.1216	HOMO-2 \rightarrow LUMO (7%)
				HOMO-1 \rightarrow LUMO (87%)
	$S_0 \to S_5$	309	0.1639	HOMO-6 \rightarrow LUMO (7%)
				HOMO \rightarrow LUMO+1 (87%)
	$S_0 \to S_7$	280	0.1835	HOMO-6 \rightarrow LUMO (6%)
				HOMO-4 \rightarrow LUMO (76%)
				HOMO-3 \rightarrow LUMO (4%)
	$S_0 \to S_8$	266	0.1568	HOMO-8 \rightarrow LUMO (3%)
				HOMO-7 \rightarrow LUMO (83%)
	$S_0 \to S_9$	262	0.3642	HOMO-1 \rightarrow LUMO+1 (3%)
				HOMO-1 \rightarrow LUMO+2 (3%)
				HOMO \rightarrow LUMO+2 (70%)
				HOMO \rightarrow LUMO+3 (3%)
				HOMO \rightarrow LUMO+5 (4%)

^aData given in parentheses are 2 \times (CI coefficient)² \times 100%; see the reference: M. Asgari, H. R. Memarian and H. Sabzyan, *J. Mol. Struct.*, 2020, **1207**, 127820.

HOMO-8 : -8.89 eV

HOMO-3 : -7.68 eV

HOMO-7 : -8.53 eV

HOMO-2 : -7.56 eV

HOMO-6 : -8.42 eV

HOMO-1 : -7.16 eV

HOMO : -5.99 eV

LUMO : -1.63 eV

LUMO+1 : 0.16 eV

LUMO+2 : 0.91 eV

LUMO+3 : 1.00 eV

LUMO+5 : 1.26 eV

Fig. S5 The frontier molecular orbitals of the optimized structures of 1.

Table S2. Calculated values of excited wavelength (λ_{calcd}), oscillator strength (*f*) and molecular orbital (MO) transition assignment for selected transition energies for **2**. The reported transitions have oscillator strength (*f*) more than 0.1.

Dye	State	λ (calcd.) / nm	f / a.u.	MO transition assignment ^a
2	$S_0 \to S_1$	558	0.4753	HOMO \rightarrow LUMO (98%)
	$S_0 \to S_2$	357	0.1109	HOMO-2 \rightarrow LUMO (5%)
				HOMO-1 \rightarrow LUMO (87%)
				HOMO \rightarrow LUMO+1 (3%)
	$S_0 \to S_4$	320	0.2329	HOMO-5 \rightarrow LUMO (3%)
				HOMO-3 \rightarrow LUMO (9%)
				HOMO-2 \rightarrow LUMO (13%)
				HOMO \rightarrow LUMO+1 (70%)
	$S_0 \to S_5$	314	0.1228	HOMO-3 \rightarrow LUMO (37%)
				HOMO-2 \rightarrow LUMO (33%)
				HOMO-1 \rightarrow LUMO (4%)
				HOMO \rightarrow LUMO+1 (19%)
	$S_0 \to S_8$	276	0.3838	HOMO-4 \rightarrow LUMO (13%)
				HOMO \rightarrow LUMO+2 (77%)
	$S_0 \rightarrow S_9$	265	0.1226	HOMO-8 \rightarrow LUMO (2%)
				HOMO-7 \rightarrow LUMO (81%)
				HOMO \rightarrow LUMO+3 (3%)

^aData given in parentheses are 2 \times (CI coefficient)² \times 100%; see the reference: M. Asgari, H. R. Memarian and H. Sabzyan, J. Mol. Struct., 2020, **1207**, 127820.

HOMO-8: -8.89 eV HOMO-7: -8.48 eV HOMO-5: -8.36 eV HOMO-4: -7.97 eV HOMO-4: -7.97 eV HOMO-3: -7.73 eV HOMO-2: -7.60 eV HOMO-1: -7.20 eV HOMO: -5.83 eV HOMO: -5.83 eV HOMO: -5.83 eV LUMO: -1.59 eV LUMO+1: 0.18 eV LUMO+2: 0.77 eV LUMO+3: 1.04 eV

Fig. S6 The frontier molecular orbitals of the optimized structures of 2.

Table S3. Calculated values of excited wavelength (λ_{calcd}), oscillator strength (*f*) and molecular orbital (MO) transition assignment for selected transition energies for **3**. The reported transitions have oscillator strength (*f*) more than 0.1.

Dye	State	λ (calcd.) / nm	f/ a.u.	MO transition assignment ^a
3	$S_0 \rightarrow S_1$	540	0.4609	HOMO \rightarrow LUMO (97%)
	$S_0 \to S_2$	352	0.1108	HOMO-3 \rightarrow LUMO (5%)
				HOMO-2 \rightarrow LUMO (3%)
				HOMO-1 \rightarrow LUMO (85%)
				HOMO \rightarrow LUMO+1 (3%)
	$S_0 \mathop{\rightarrow} S_4$	319	0.2678	HOMO-2 \rightarrow LUMO (2%)
				HOMO-1 \rightarrow LUMO (2%)
				HOMO \rightarrow LUMO+1 (89%)
	$S_0 \to S_6$	283	0.1111	HOMO-7 \rightarrow LUMO (5%)
				HOMO-6 \rightarrow LUMO (69%)
				HOMO-4 \rightarrow LUMO (17%)
	$S_0 \mathop{\rightarrow} S_8$	269	0.3232	HOMO-7 \rightarrow LUMO (45%)
				HOMO-6 \rightarrow LUMO+1 (3%)

 $\begin{array}{ccc} HOMO-4 \rightarrow LUMO \ (4\%) \\ HOMO \rightarrow LUMO+2 \ (35\%) \\ HOMO \rightarrow LUMO+3 \ (3\%) \\ HOMO-7 \rightarrow LUMO \ (19\%) \\ HOMO-4 \rightarrow LUMO \ (3\%) \\ HOMO-3 \rightarrow LUMO \ (3\%) \\ HOMO \rightarrow LUMO+2 \ (4\%) \\ HOMO \rightarrow LUMO+3 \ (54\%) \end{array}$

^aData given in parentheses are $2 \times (CI \text{ coefficient})^2 \times 100\%$; see the reference: M. Asgari, H. R. Memarian and H. Sabzyan, *J. Mol. Struct.*, 2020, **1207**, 127820.

Fig. S7 The frontier molecular orbitals of the optimized structures of 3.

Table S4. Calculated values of excited wavelength (λ_{calcd}), oscillator strength (*f*) and molecular orbital (MO) transition assignment for selected transition energies for **4**. The reported transitions have oscillator strength (*f*) more than 0.1.

Dye	State	λ (calcd.) / nm	f / a.u.	MO transition assignment ^a
4	$S_0 \to S_1$	567	0.4368	HOMO \rightarrow LUMO (98%)
	$S_0 \to S_3$	354	0.3575	HOMO-1 \rightarrow LUMO (12%)
				HOMO \rightarrow LUMO+1 (81%)
	$S_0 \mathop{\rightarrow} S_5$	322	0.1140	HOMO-6 \rightarrow LUMO (4%)
				HOMO-4 \rightarrow LUMO (17%)
				HOMO-3 \rightarrow LUMO (70%)
				$HOMO-2 \rightarrow LUMO (2\%)$
				HOMO-1 \rightarrow LUMO (3%)
	$S_0 \mathop{\rightarrow} S_7$	280	0.1885	HOMO-6 \rightarrow LUMO (17%)
				HOMO \rightarrow LUMO+2 (64%)
				HOMO \rightarrow LUMO+3 (7%)
	$S_0 \to S_8$	276	0.2701	HOMO-4 \rightarrow LUMO (49%)
				HOMO-3 \rightarrow LUMO (17%)
				HOMO \rightarrow LUMO+3 (21%)
	$S_0 \to S_9$	271	0.1221	HOMO-7 \rightarrow LUMO (23%)
				HOMO-4 \rightarrow LUMO (8%)
				HOMO \rightarrow LUMO+2 (13%)
				HOMO \rightarrow LUMO+3 (45%)

^aData given in parentheses are 2 \times (CI coefficient)² \times 100%; see the reference: M. Asgari, H. R. Memarian and H. Sabzyan, J. Mol. Struct., 2020, **1207**, 127820.

HOMO-7 : -8.48 eV

HOMO-4 : -7.98 eV

HOMO-3 : -7.77 eV

HOMO-2 : -7.59 eV

HOMO : -5.72 eV

LUMO : -1.52 eV

HOMO-1 : -7.16 eV

S-10

Fig. S8 The frontier molecular orbitals of the optimized structures of 4.

Table S5. Calculated values of excited wavelength (λ_{calcd}), oscillator strength (*f*) and molecular orbital (MO) transition assignment for selected transition energies for **5**. The reported transitions have oscillator strength (*f*) more than 0.1.

Dye	State	λ (calcd.) / nm	f / a.u.	MO transition assignment ^a
5	$S_0 \to S_1$	482	0.8209	HOMO \rightarrow LUMO (98%)
	$S_0 \mathop{\rightarrow} S_2$	332	0.1025	HOMO-9 \rightarrow LUMO (2%)
				HOMO-5 \rightarrow LUMO (2%)
				HOMO-2 \rightarrow LUMO (5%)
				HOMO-1 \rightarrow LUMO (86%)
	$S_0 \mathop{\rightarrow} S_4$	283	0.3431	HOMO-2 \rightarrow LUMO (63%)
				HOMO-1 \rightarrow LUMO (4%)
				HOMO \rightarrow LUMO+1 (20%)
	$S_0 \to S_5$	282	0.1173	HOMO−5 → LUMO (27%)
				HOMO−2 → LUMO (19%)
				HOMO \rightarrow LUMO+1 (45%)

^aData given in parentheses are 2 \times (CI coefficient)² \times 100%; see the reference: M. Asgari, H. R. Memarian and H. Sabzyan, *J. Mol. Struct.*, 2020, **1207**, 127820.

HOMO : -6.21 eV

LUMO : -1.65 eV

LUMO+1 : 0.30 eV

Fig. S9 The frontier molecular orbitals of the optimized structures of 5.

Fig. S10 Chromatogram of the enantiomeric separation of 2. CHIRALPACK-IE was used, where the flow rate and solvent were 1.9 mL min⁻¹ and CH₂Cl₂:hexane (2:1 v/v), respectively.

Fig. S11 Calculated CD spectrum of *P*-isomer of 2, being conducted by DFT and TDDFT method at CAM-B3LYP/6-31G(d,p).

Fig. S12 DSC (a) and TGA (b) plots of 2.

Fig. S13 Photoelectron spectroscopic analysis of film 2.

[Mass Spectrum] Data : 20181205-nozawaEXP48-001 Date : 05-Dec-2018 17:13 Instrument : MStation Sample : -Inlet : Direct Ion Mode : FAB+ Spectrum Type : Normal Ion [MF-Linear] Scan# : (5,10) BP : m/z 136 Int. : 3.47 (36348) Output m/z range : 50 to 540 Cut Level : 0.00 %

Fig. S17 FAB mass spectrum (positive mode) of 1.

Fig. S18 ATR-FT-IR spectrum of 1.

Fig. S19 DSC plots of 1.

[Mass Spectrum] Data : 181127- EXP185-001 Date : 27-Nov-2018 19:40 Instrument : MStation Sample : -Inlet : Direct Ion Mode : FAB+ Spectrum Type : Normal Ion [MF-Linear] Scan# : (2,6) BP : m/z 154 Int. : 5.49 (57595) Output m/z range : 50 to 505 Cut Level : 0.00 %

[%]

Fig. S24 ATR-FT-IR spectrum of 2.

[Mass Spectrum] Data : 190111- nozawa EXP56-001 Date : 11-Jan-2019 10:31 Instrument : MStation Sample : -Inlet : Direct Ion Mode : FAB+ Spectrum Type : Normal Ion [MF-Linear] Scan# : (2,3) BP : m/z 468 Int. : 4.94 (51807) Output m/z range : 50 to 502 Cut Level : 0.00 %

Fig. S29 ATR-FT-IR spectrum of 3.

Fig. S30 DSC plots of 3.

[Mass Spectrum] Data : 190612-Nozawa EXP85 after hexane wash-002 Date : 19-Jun-2019 17:20 Instrument : MStation Sample : -Inlet : Direct Ion Mode : FAB+ Spectrum Type : Normal Ion [MF-Linear] Scan# : (3,8) BP : m/z 154 Int. : 96.56 (1012546) Output m/z range : 50 to 522 Cut Level : 0.00 %

Fig. S35 ATR-FT-IR spectrum of 4.

Fig. S36 DSC plots of 4.

[Mass Spectrum] Data : 190718-Nozawa EXP93-001 Date : 18-Jul-2019 19:48 Instrument : MStation Sample : -Inlet : Direct Ion Mode : FAB+ Spectrum Type : Normal Ion [MF-Linear] Scan# : (3,8) BP : m/z 154 Int. : 218.19 (2287872) Output m/z range : 50 to 502 Cut Level : 0.00 %

Fig. S40 FAB mass spectrum (positive mode) of 5.

Fig. S41 ATR-FT-IR spectrum of 5.

Fig. S42 DSC plots of 5.

[Mass Spectrum] Data : 180825- nozawaEXP28 -001 Date : 25-Aug-2018 17:43 Instrument : MStation Sample : -Inlet : Direct Ion Mode : FAB+ Spectrum Type : Normal Ion [MF-Linear] Scan# : (2,5) BP : m/z 251 Int. : 12.02 (126041) Output m/z range : 50 to 277 Cut Level : 0.00 %

Fig. S44 FAB mass spectrum (positive mode) of 8a.

[Mass Spectrum] Data : 20180719-nozawaEXP20_Frc3-001 Date : 19-Jul-2018 15:46 Instrument : MStation Sample : -Inlet : Direct Ion Mode : FAB+ Spectrum Type : Normal Ion [MF-Linear] Scan# : (4,8) BP : m/z 69 Int. : 1.39 (14565) Output m/z range : 50 to 286 Cut Level : 0.00 %

Fig. S46 FAB mass spectrum (positive mode) of 8b.

[Mass Spectrum] Data : 20181124-nozawaEXP43-001 Date : 25-Nov-2018 02:50 Instrument : MStation Sample : -Inlet : Direct Ion Mode : FAB+ Spectrum Type : Normal Ion [MF-Linear] Scan# : (2,4) BP : m/z 249 Int. : 109.69 (1150165) Output m/z range : 50 to 371 Cut Level : 0.00 %

Fig. S48 FAB mass spectrum (positive mode) of 9a.

[Mass Spectrum] Data : 180603- EXP137 -001 Date : 03-Jun-2018 16:48 Instrument : MStation Sample : -Inlet : Direct Ion Mode : FAB+ Spectrum Type : Normal Ion [MF-Linear] Scan# : (2,3) BP : m/z 255 Int. : 87.14 (913704) Output m/z range : 50 to 269 Cut Level : 0.00 %

Fig. S50 FAB mass spectrum (positive mode) of 9b.

S-47

[Mass Spectrum] Data : 20180531_shimada_EXP84-001 Date : 31-May-2018 15:32 Instrument : MStation Sample : -Inlet : Direct Ion Mode : FAB+ Spectrum Type : Normal Ion [MF-Linear] Scan# : (2,3) BP : m/z 289 Int. : 70.63 (740568) Output m/z range : 50 to 315 Cut Level : 0.00 %

Fig. S52 FAB mass spectrum (positive mode) of 11.

Fig. S55 High resolution of APCI mass spectrum (positive mode) of 12a.

Fig. S57 DSC plots of 12a.

S-53

Bruker Compass DataAnalysis 4.0printed:12/19/2020 5:4Fig. S60 High resolution of APCI mass spectrum (positive mode) of 12b.S-55 12/19/2020 5:43:35 PM Page 1 of 1

Fig. S61 ATR-FT-IR spectrum of 12b.

Fig. S62 DSC plots of 12b.

Fig. S65 ATR-FT-IR spectrum of 12c.

Fig. S66 DSC plots of 12c.

Fig. S69 High resolution of APCI mass spectrum (positive mode) of 12d.

Generic Display Report

Fig. S80 ATR-FT-IR spectrum of 13a.

Fig. S81 DSC plots of 13a.

S-72

Fig. S86 ATR-FT-IR spectrum of 13b.

Fig. S87 DSC plots of 13b.

Fig. S89 ¹¹B NMR spectrum of **13c** (160 MHz) in CDCl₃.

Fig. S90 High resolution of APCI mass spectrum (positive mode) of 13c.

Fig. S91 ATR-FT-IR spectrum of 13c.

Fig. S92 DSC plots of 13c.

Bruker Compass DataAnalysis 4.0printed:12/19/2020 6:53:55 PMPage 1 of 1Fig. S95 High resolution of APCI mass spectrum (positive mode) of 13d.

S-83

Fig. S96 ATR-FT-IR spectrum of 13d.

Fig. S97 DSC plots of 13d.

Single crystal X-ray diffraction study for **2** (CCDC No. 2024003)

Data Collection

A green platelet crystal of $C_{29}H_{17}BN_2O_2S$ having approximate dimensions of $0.450 \times 0.190 \times 0.080$ mm was mounted on a glass fiber. All measurements were made on a Rigaku XtaLAB mini diffractometer using graphite monochromated Mo-Ka radiation.

The crystal-to-detector distance was 50.03 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive triclinic cell with dimensions:

 $\begin{array}{rcl} a &=& 10.254(7) \ \text{\AA} & \alpha &=& 65.218(16)^{\text{O}} \\ b &=& 10.429(6) \ \text{\AA} & \beta &=& 86.33(2)^{\text{O}} \\ c &=& 11.673(7) \ \text{\AA} & \gamma &=& 77.330(19)^{\text{O}} \\ V &=& 1105.2(12) \ \text{\AA}^3 \end{array}$

For Z = 2 and F.W. = 468.34, the calculated density is 1.407 g/cm³. Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

P-1 (#2)

The data were collected at a temperature of $-173 \pm 1^{\circ}$ C to a maximum 2q value of 54.9°. A total of 540 oscillation images were collected. A sweep of data was done using w scans from -60.0 to 120.0° in 1.00° step, at c=54.0° and f = 0.0°. The exposure rate was 16.0 [sec./°]. The detector swing angle was 29.87°. A second sweep was performed using w scans from -60.0 to 120.0° in 1.00° step, at c=54.0° and f = 120.0°. The exposure rate was 16.0 [sec./°]. The detector swing angle was 29.87°. Another sweep was performed using w scans from -60.0 to 120.0° in 1.00° step, at c=54.0° and f = 240.0°. The exposure rate was 16.0 [sec./°]. The detector swing angle was 29.87°. Another sweep was performed using w scans from -60.0 to 120.0° in 1.00° step, at c=54.0° and f = 240.0°. The exposure rate was 16.0 [sec./°]. The detector swing angle was 29.87°. Another sweep was performed using w scans from -60.0 to 120.0° in 1.00° step, at c=54.0° and f = 240.0°. The exposure rate was 16.0 [sec./°]. The detector swing angle was 29.87°. Another sweep was performed using w scans from -60.0 to 120.0° in 1.00° step, at c=54.0° and f = 240.0°. The exposure rate was 16.0 [sec./°]. The detector swing angle was 29.87°. The crystal-to-detector distance was 50.03 mm. Readout was performed in the 0.073 mm pixel mode.

Data Reduction

Of the 11623 reflections were collected, where 4988 were unique ($R_{int} = 0.0319$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). ¹

The linear absorption coefficient, m, for Mo-Ka radiation is 1.785 cm^{-1} . An empirical absorption correction was applied which resulted in transmission factors ranging from 0.909 to 0.986. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods² and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement³ on F^2 was based on 4983 observed reflections and 316 variable parameters and converged (largest parameter shift was 0.01 times its esd) with unweighted and weighted agreement factors of:

 $R1 = \sum ||Fo| - |Fc|| / \sum |Fo| = 0.0525$

wR2 =
$$\left[\sum (w (Fo^2 - Fc^2)^2) / \sum w(Fo^2)^2\right]^{1/2} = 0.1928$$

The goodness of fit⁴ was 1.32. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.39 and -0.86 e^{-/A^3} , respectively.

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for Df and Df' were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁸. All calculations were performed using the CrystalStructure⁹ crystallographic software package except for refinement, which was performed using SHELXL Version 2014/7¹⁰.

<u>References</u>

(1) CrystalClear: Data Collection and Processing Software, Rigaku Corporation (1998-2015). Tokyo 196-8666, Japan.

(2) <u>SHELXT</u>: Sheldrick, G. M. (2014). Acta Cryst. A70, C1437.

(3) Least Squares function minimized: (SHELXL Version 2014/7)

 $\Sigma w (F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(4) Goodness of fit is defined as:

 $[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$ where: N₀ = number of observations N_V = number of variables

(5) International Tables for Crystallography, Vol.C (1992). Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, pp. 572.

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) CrystalStructure 4.3: Crystal Structure Analysis Package, Rigaku Corporation (2000-2018). Tokyo 196-8666, Japan.

(10) SHELXL Version 2014/7: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

EXPERIMENTAL DETAILS

A. Crystal Data

C ₂₉ H ₁₇ BN ₂ O ₂ S
468.34
green, platelet
$0.450 \times 0.190 \times 0.080 \text{ mm}$
triclinic
Primitive
a = 10.254(7) Å
b = 10.429(6) Å
c = 11.673(7) Å
$\alpha = 65.218(16)^{\circ}$
$\beta = 86.33(2)^{\circ}$
$\gamma = 77.330(19)^{\circ}$
$V = 1105.2(12) Å^3$
P-1 (#2)
2
1.407 g/cm ³
484.00
1.785 cm ⁻¹

B. Intensity Measurements

Diffractometer Radiation	XtaLAB mini MoKa ($\lambda = 0.71075$ Å) graphite monochromated
Voltage, Current	50kV, 12mA
Temperature	-173.0°C
Detector Aperture	75.0 mm (diameter)
Data Images	540 exposures
ω oscillation Range (χ =54.0, ϕ =0.0)	-60.0 - 120.0 ^o
Exposure Rate	16.0 sec./ ^o
Detector Swing Angle	29.87°
ω oscillation Range (χ =54.0, ϕ =120.0)	-60.0 - 120.0 ^o
Exposure Rate	16.0 sec./ ⁰
Detector Swing Angle	29.87 ^o
ω oscillation Range (χ =54.0, ϕ =240.0)	-60.0 - 120.0 ^o
Exposure Rate	16.0 sec./ ^o
Detector Swing Angle	29.87 ^o
Detector Position	50.03 mm
Pixel Size	0.073 mm
2q _{max}	54.9 ^o
No. of Reflections Measured	Total: 11623
	Unique: $4988 (R_{int} = 0.0319)$
Corrections	Lorentz-polarization
	Absorption
	(trans. factors: 0.909 - 0.986)

C. Structure Solution and Refinement

Direct Methods (SHELXT)
Full-matrix least-squares on F ²
$\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$
$w = 1/[\sigma^2(Fo^2) + (0.1000 \cdot P)^2$
+ 0.0000 · P]
where $P = (Max(Fo^2, 0) + 2Fc^2)/3$
54.9 ^o
All non-hydrogen atoms
4983
316
15.77
0.0525
0.0673
0.1928
1.321
0.014
0.39 e ⁻ /Å ³
-0.86 e ⁻ /Å ³

Atomic coordinates and Biso/Beq

		1		
atom	Х	У	Z	Beq
S1	0.83348(6)	0.94948(6)	0.43263(5)	1.941(16)
O1	0.74590(15)	0.57441(16)	0.63216(14)	1.65(3)
O2	0.61354(15)	0.65199(16)	0.77550(13)	1.56(3)
N1	0.53260(18)	0.73970(19)	0.54970(17)	1.44(3)
N2	0.52586(18)	0.4978(2)	0.70889(17)	1.58(3)
C1	0.9730(2)	0.8155(3)	0.5015(2)	2.19(4)
C2	0.9430(2)	0.6837(3)	0.5732(2)	1.98(4)
C3	0.8025(2)	0.6917(2)	0.5731(2)	1.52(4)
C4	0.7288(2)	0.8299(2)	0.4999(2)	1.57(4)
C5	0.5895(2)	0.8517(2)	0.47213(19)	1.50(4)
C6	0.4998(2)	0.9417(2)	0.3687(2)	1.71(4)
C7	0.3916(2)	0.8757(3)	0.3799(2)	1.70(4)
C8	0.2735(2)	0.9293(2)	0.29330(19)	1.45(4)
C9	0.2075(2)	1.0748(2)	0.2473(2)	1.71(4)
C10	0.0919(2)	1.1237(2)	0.1708(2)	1.89(4)
C11	0.0421(2)	1.0301(3)	0.1375(2)	1.98(4)
C12	0.1090(2)	0.8863(3)	0.1796(2)	1.90(4)
C13	0.2236(2)	0.8366(3)	0.2572(2)	1.76(4)
C14	0.4157(2)	0.7450(2)	0.4930(2)	1.55(4)
C15	0.3564(2)	0.6241(2)	0.5415(2)	1.56(4)
C16	0.4128(2)	0.5012(2)	0.6457(2)	1.51(4)
C17	0.3643(2)	0.3735(2)	0.7248(2)	1.53(4)
C18	0.2557(2)	0.3198(2)	0.7097(2)	1.79(4)
C19	0.2308(2)	0.1944(3)	0.8076(2)	2.12(4)
C20	0.3093(2)	0.1257(3)	0.9196(2)	2.17(4)
C21	0.4158(2)	0.1786(3)	0.9372(2)	2.03(4)
C22	0.4449(2)	0.3026(2)	0.8380(2)	1.76(4)
C23	0.5415(2)	0.3901(2)	0.8262(2)	1.70(4)
C24	0.6271(2)	0.3981(2)	0.9149(2)	1.57(4)
C25	0.6708(2)	0.2837(3)	1.0332(2)	1.96(4)
C26	0.7412(3)	0.3030(3)	1.1196(2)	2.10(4)
C27	0.7705(3)	0.4379(3)	1.0897(2)	2.24(4)
C28	0.7284(2)	0.5537(2)	0.9741(2)	1.85(4)
C29	0.6572(2)	0.5352(2)	0.8864(2)	1.65(4)

Atomic coordinates and B_{iso} involving hydrogen atoms

atom	Х	У	Z	Biso	
H1	1.06155	0.83159	0.49076	2.624	
H2	1.00761	0.59790	0.61743	2.373	
H6	0.51085	1.03108	0.30330	2.047	
H9	0.24135	1.14036	0.26820	2.054	
H10	0.04677	1.22221	0.14127	2.268	
H11	-0.03719	1.06411	0.08620	2.376	
H12	0.07664	0.82213	0.15566	2.279	
H13	0.26862	0.73815	0.28602	2.118	
H15	0.27679	0.62672	0.50234	1.874	
H18	0.20078	0.36760	0.63496	2.144	
H19	0.15934	0.15454	0.79833	2.544	
H20	0.28909	0.04094	0.98511	2.600	
H21	0.46742	0.13234	1.01395	2.438	
H25	0.65140	0.19167	1.05376	2.353	
H26	0.76961	0.22509	1.19891	2.518	
H27	0.81973	0.45085	1.14879	2.690	
H28	0.74825	0.64514	0.95527	2.219	

Anisotropic displacement parameters

atom	U ₁₁	U22	U33	U ₁₂	U13	U23	
S1	0.0222(3)	0.0277(3)	0.0223(3)	-0.0111(2)	0.0023(2)	-0.0064(3)	
01	0.0171(8)	0.0225(8)	0.0208(8)	-0.0041(6)	0.0014(6)	-0.0068(6)	
O2	0.0215(8)	0.0189(8)	0.0171(8)	-0.0048(6)	-0.0002(6)	-0.0054(6)	
N1	0.0158(9)	0.0194(9)	0.0191(9)	-0.0041(7)	0.0003(7)	-0.0072(7)	
N2	0.0166(9)	0.0234(10)	0.0177(9)	-0.0030(7)	0.0005(7)	-0.0068(8)	
C1	0.0190(11)	0.0371(14)	0.0299(12)	-0.0105(10)	0.0043(10)	-0.0151(11)	
C2	0.0198(12)	0.0285(12)	0.0270(12)	-0.0051(9)	0.0023(9)	-0.0119(10)	
C3	0.0212(11)	0.0193(10)	0.0175(10)	-0.0074(9)	0.0028(8)	-0.0067(9)	
C4	0.0226(11)	0.0201(10)	0.0174(10)	-0.0107(9)	0.0014(8)	-0.0053(9)	
C5	0.0211(11)	0.0200(10)	0.0171(10)	-0.0047(9)	0.0025(8)	-0.0089(9)	
C6	0.0241(12)	0.0198(11)	0.0170(10)	-0.0022(9)	0.0007(9)	-0.0052(9)	
C7	0.0171(11)	0.0282(12)	0.0159(10)	-0.0017(9)	-0.0010(8)	-0.0072(9)	
C8	0.0190(11)	0.0199(10)	0.0169(10)	-0.0052(9)	0.0014(8)	-0.0079(9)	
C9	0.0220(11)	0.0248(11)	0.0173(10)	-0.0043(9)	0.0004(9)	-0.0081(9)	
C10	0.0227(12)	0.0219(11)	0.0214(11)	-0.0016(9)	-0.0020(9)	-0.0046(9)	
C11	0.0176(11)	0.0341(13)	0.0202(11)	-0.0051(10)	-0.0016(9)	-0.0078(10)	
C12	0.0219(12)	0.0328(13)	0.0199(11)	-0.0091(10)	0.0018(9)	-0.0119(10)	
C13	0.0180(11)	0.0274(12)	0.0174(10)	-0.0027(9)	0.0018(8)	-0.0063(9)	
C14	0.0165(10)	0.0233(11)	0.0184(10)	-0.0039(9)	0.0014(8)	-0.0084(9)	
C15	0.0181(11)	0.0213(11)	0.0201(11)	-0.0054(9)	0.0012(9)	-0.0083(9)	
C16	0.0181(11)	0.0199(11)	0.0229(11)	-0.0068(8)	0.0031(8)	-0.0113(9)	
C17	0.0199(11)	0.0185(10)	0.0225(11)	-0.0054(9)	0.0042(9)	-0.0111(9)	
C18	0.0239(12)	0.0193(11)	0.0299(12)	-0.0051(9)	0.0044(9)	-0.0154(10)	
C19	0.0219(12)	0.0256(12)	0.0399(14)	-0.0102(10)	0.0090(10)	-0.0188(11)	
C20	0.0265(12)	0.0228(12)	0.0308(13)	-0.0079(10)	0.0097(10)	-0.0090(10)	
C21	0.0239(12)	0.0246(12)	0.0253(12)	-0.0039(10)	0.0051(9)	-0.0083(10)	
C22	0.0181(11)	0.0255(12)	0.0223(11)	-0.0049(9)	0.0038(9)	-0.0094(10)	
C23	0.0171(11)	0.0233(11)	0.0206(11)	-0.0033(9)	0.0039(9)	-0.0065(9)	
C24	0.0187(11)	0.0172(10)	0.0221(11)	-0.0012(8)	0.0032(9)	-0.0081(9)	
C25	0.0213(11)	0.0244(12)	0.0221(11)	-0.0022(9)	0.0018(9)	-0.0048(10)	
C26	0.0287(13)	0.0222(11)	0.0222(11)	-0.0008(10)	0.0006(10)	-0.0051(9)	
C27	0.0272(13)	0.0359(14)	0.0214(11)	-0.0029(10)	-0.0029(9)	-0.0126(10)	
C28	0.0236(12)	0.0217(11)	0.0260(12)	-0.0024(9)	0.0022(9)	-0.0123(10)	
C29	0.0176(10)	0.0234(11)	0.0175(10)	-0.0005(9)	0.0032(8)	-0.0065(9)	
B1	0.0184(12)	0.0155(11)	0.0198(12)	-0.0040(9)	0.0006(9)	-0.0085(9)	

The general temperature factor expression: $exp(-2\pi 2(a^{*}2U_{11}h^{2} + b^{*2}U_{22}k^{2} + c^{*2}U_{33}l^{2} + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

	0 ()					
atom	atom	distance	atom	atom	distance	
S1	C1	1.724(2)	S1	C4	1.727(3)	
01	C3	1.364(3)	O1	B1	1.488(3)	
O2	C29	1.368(2)	O2	B1	1.466(4)	
N1	C5	1.367(3)	N1	C14	1.385(3)	
N1	B1	1.522(3)	N2	C16	1.400(3)	
N2	C23	1.350(3)	N2	B1	1.536(3)	
C1	C2	1.369(4)	C2	C3	1.425(3)	
C3	C4	1.396(3)	C4	C5	1.433(3)	
C5	C6	1.414(3)	C6	C7	1.401(4)	
C7	C8	1.479(3)	C7	C14	1.431(3)	
C8	С9	1.401(3)	C8	C13	1.400(4)	
C9	C10	1.397(3)	C10	C11	1.388(4)	
C11	C12	1.391(3)	C12	C13	1.395(3)	
C14	C15	1.405(4)	C15	C16	1.384(3)	
C16	C17	1.440(3)	C17	C18	1.402(4)	
C17	C22	1.424(3)	C18	C19	1.392(3)	
C19	C20	1.403(4)	C20	C21	1.388(4)	
C21	C22	1.404(3)	C22	C23	1.452(4)	
C23	C24	1.439(4)	C24	C25	1.413(3)	
C24	C29	1.425(4)	C25	C26	1.381(4)	
C26	C27	1.396(4)	C27	C28	1.394(3)	
C28	C29	1.394(4)				

Bond lengths (Å)

Bond lengths involving hydrogens (Å)

atom	atom	distance	atom	atom	distance
C1	H1	0.950	C2	H2	0.950
C6	H6	0.950	С9	H9	0.950
C10	H10	0.950	C11	H11	0.950
C12	H12	0.950	C13	H13	0.950
C15	H15	0.950	C18	H18	0.950
C19	H19	0.950	C20	H20	0.950
C21	H21	0.950	C25	H25	0.950
C26	H26	0.950	C27	H27	0.950
C28	H28	0.950			

Bond ar	ngles (°)						
atom	atom	atom	angle	atom	atom	atom	angle
C1	S 1	C4	91.69(12)	C3	01	B1	111.17(17)
C29	O2	B1	114.77(19)	C5	N1	C14	109.61(17)
C5	N1	B1	121.8(2)	C14	N1	B1	127.61(19)
C16	N2	C23	111.4(2)	C16	N2	B1	125.71(16)
C23	N2	B1	121.5(2)	S 1	C1	C2	113.03(19)
C1	C2	C3	111.33(19)	01	C3	C2	123.40(17)
01	C3	C4	123.2(2)	C2	C3	C4	113.3(2)
S 1	C4	C3	110.62(18)	S 1	C4	C5	128.12(14)
C3	C4	C5	120.3(2)	N1	C5	C4	113.65(16)
N1	C5	C6	108.1(2)	C4	C5	C6	136.34(19)
C5	C6	C7	107.75(18)	C6	C7	C8	127.34(18)
C6	C7	C14	106.9(2)	C8	C7	C14	125.7(2)
C7	C8	C9	120.2(3)	C7	C8	C13	121.3(2)
C9	C8	C13	118.5(2)	C8	С9	C10	120.2(3)
C9	C10	C11	120.8(2)	C10	C11	C12	119.6(2)
C11	C12	C13	119.8(3)	C8	C13	C12	121.1(2)
N1	C14	C7	107.2(2)	N1	C14	C15	119.38(17)
C7	C14	C15	132.7(2)	C14	C15	C16	120.6(2)
N2	C16	C15	120.6(2)	N2	C16	C17	106.23(17)
C15	C16	C17	132.0(2)	C16	C17	C18	131.77(19)
C16	C17	C22	107.5(2)	C18	C17	C22	120.64(19)
C17	C18	C19	118.0(2)	C18	C19	C20	121.2(3)
C19	C20	C21	121.6(2)	C20	C21	C22	118.0(2)
C17	C22	C21	120.5(2)	C17	C22	C23	106.62(18)
C21	C22	C23	132.7(2)	N2	C23	C22	107.6(2)
N2	C23	C24	117.6(2)	C22	C23	C24	133.83(19)
C23	C24	C25	124.1(2)	C23	C24	C29	117.19(17)
C25	C24	C29	118.3(2)	C24	C25	C26	121.2(2)
C25	C26	C27	119.6(2)	C26	C27	C28	120.2(2) 120.9(3)
C27	C28	C29	119.9(2)	02	C29	C24	120.9(3) 121.4(2)
$\frac{02}{02}$	C29	C28	119.9(2) 118.6(2)	C24	C29	C28	120.02(18)
01	R1	02	107.2(2)	01	R1	N1	107.69(17)
01	B1	N2	107.2(2) 114 4(2)	O^2	B1	N1	1157(2)
01	DI	112	117.7(2)	02	DI	111	113.7(2)

02	B1	N2	106.25(17)	N1	B1	N2	105.9(2)
04	D1	1 1 2	100.20(17)	111	D 1	1 12	100.7(2)

Dona an		ing nyuroger					
atom	atom	atom	angle	atom	atom	atom	angle
S1	C1	H1	123.5	C2	C1	H1	123.5
C1	C2	H2	124.3	C3	C2	H2	124.3
C5	C6	H6	126.1	C7	C6	H6	126.1
C8	C9	H9	119.9	C10	С9	H9	119.9
C9	C10	H10	119.6	C11	C10	H10	119.6
C10	C11	H11	120.2	C12	C11	H11	120.2
C11	C12	H12	120.1	C13	C12	H12	120.1
C8	C13	H13	119.5	C12	C13	H13	119.4
C14	C15	H15	119.7	C16	C15	H15	119.7
C17	C18	H18	121.0	C19	C18	H18	121.0
C18	C19	H19	119.4	C20	C19	H19	119.4
C19	C20	H20	119.2	C21	C20	H20	119.2
C20	C21	H21	121.0	C22	C21	H21	121.0
C24	C25	H25	119.4	C26	C25	H25	119.4
C25	C26	H26	120.2	C27	C26	H26	120.2
C26	C27	H27	119.6	C28	C27	H27	119.6
C27	C28	H28	120.0	C29	C28	H28	120.0

Bond angles involving hydrogens (°)

10181011	Aligies) (11	USC HAVII	ig boliu aligles – 100	101 < 200	legiees ai	e exclude	u.)		 	
atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle	 	
C1	S1	C4	C3	0.19(19)	C1	S1	C4	C5	-168.6(2)		
C4	S 1	C1	C2	0.1(2)	C3	01	B1	O2	-74.33(19)		
C3	01	B1	N1	50.8(3)	C3	01	B1	N2	168.12(17)		
B1	01	C3	C2	154.4(2)	B1	01	C3	C4	-29.8(3)		
C29	O2	B1	01	-71.5(2)	C29	O2	B1	N1	168.33(17)		
C29	O2	B1	N2	51.2(2)	B1	O2	C29	C24	-33.3(3)		
B1	O2	C29	C28	148.96(18)	C5	N1	C14	C7	-6.1(3)		
C5	N1	C14	C15	165.8(2)	C14	N1	C5	C4	-160.02(19)		
C14	N1	C5	C6	6.8(3)	C5	N1	B1	01	-43.8(3)		
C5	N1	B1	O2	76.1(3)	C5	N1	B1	N2	-166.5(2)		
B1	N1	C5	C4	9.7(3)	B1	N1	C5	C6	176.5(2)		
C14	N1	B1	01	124.0(2)	C14	N1	B1	02	-116.1(3)		
C14	N1	B1	N2	1.2(3)	B1	N1	C14	C7	-175.1(2)		
B1	N1	C14	C15	-3.2(4)	C16	N2	C23	C22	8.1(3)		
C16	N2	C23	C24	-162.06(19)	C23	N2	C16	C15	161.3(2)		
C23	N2	C16	C17	-7.8(3)	C16	N2	B1	01	-115.2(2)		
C16	N2	B1	02	126.7(2)	C16	N2	B1	N1	3.2(3)		
B1	N2	C16	C15	-5.7(3)	B1	N2	C16	C17	-174.85(19)		
C23	N2	B1	01	79.0(3)	C23	N2	B1	02	-39.1(3)		
C23	N2	B1	N1	-162.64(19)	B1	N2	C23	C22	175.82(17)		
B1	N2	C23	C24	5.6(3)	S1	C1	C2	C3	-0.4(3)		
C1	C2	C3	01	176.8(2)	C1	C2	C3	C4	0.6(3)		
01	C3	C4	S1	-176.7(2)	01	C3	C4	C5	-6.8(4)		
C2	C3	C4	S1	-0.5(3)	C2	C3	C4	C5	169.4(2)		
S1	C4	C5	N1	-174.79(18)	S1	C4	C5	C6	23.6(5)		
C3	C4	C5	N1	17.3(3)	C3	C4	C5	C6	-144.3(3)		
N1	C5	C6	C7	-4.7(3)	C4	C5	C6	C7	157.6(3)		
C5	C6	C7	C8	-179.6(2)	C5	C6	C7	C14	0.9(3)		
C6	C7	C8	C9	-44.6(4)	C6	C7	C8	C13	136.6(3)		
C6	C7	C14	N1	3.1(3)	C6	C7	C14	C15	-167.3(2)		
C8	C7	C14	N1	-176.4(2)	C8	C7	C14	C15	13.2(4)		
C14	C7	C8	C9	134.7(2)	C14	C7	C8	C13	-44.1(3)		
C7	C8	C9	C10	-176.67(17)	C7	C8	C13	C12	177.36(17)		
C9	Č8	C13	C12	-1.5(3)	C13	C8	C9	C10	2.2(3)		
C8	C9	C10	C11	-1.1(3)	C9	C10	C11	C12	-0.7(3)		
		210	~	(0)			c	100			
								-100			

Torsion Angles(°) (Those having bond angles > 160 or < 20 degrees are excluded.)

C10	C11	C12	C13	1.4(3)	C11	C12	C13	C8	-0.3(3)
N1	C14	C15	C16	0.7(4)	C7	C14	C15	C16	170.2(2)
C14	C15	C16	N2	3.5(4)	C14	C15	C16	C17	169.4(2)
N2	C16	C17	C18	-179.5(2)	N2	C16	C17	C22	4.2(2)
C15	C16	C17	C18	13.2(5)	C15	C16	C17	C22	-163.2(3)
C16	C17	C18	C19	-177.0(2)	C16	C17	C22	C21	176.0(2)
C16	C17	C22	C23	0.5(3)	C18	C17	C22	C21	-0.8(4)
C18	C17	C22	C23	-176.4(2)	C22	C17	C18	C19	-1.1(4)
C17	C18	C19	C20	1.8(4)	C18	C19	C20	C21	-0.8(4)
C19	C20	C21	C22	-1.1(4)	C20	C21	C22	C17	1.8(4)
C20	C21	C22	C23	176.1(2)	C17	C22	C23	N2	-5.2(3)
C17	C22	C23	C24	162.7(2)	C21	C22	C23	N2	-180.0(3)
C21	C22	C23	C24	-12.1(5)	N2	C23	C24	C25	-169.15(19)
N2	C23	C24	C29	17.8(3)	C22	C23	C24	C25	23.9(4)
C22	C23	C24	C29	-149.2(2)	C23	C24	C25	C26	-173.1(2)
C23	C24	C29	O2	-4.0(3)	C23	C24	C29	C28	173.62(18)
C25	C24	C29	O2	-177.51(19)	C25	C24	C29	C28	0.2(3)
C29	C24	C25	C26	-0.1(3)	C24	C25	C26	C27	-0.3(3)
C25	C26	C27	C28	0.6(4)	C26	C27	C28	C29	-0.6(4)
C27	C28	C29	O2	177.9(2)	C27	C28	C29	C24	0.2(3)

		1.			1.
atom	atom	distance	atom	atom	distance
S1	C6	3.574(3)	01	C5	2.871(3)
01	C14	3.592(3)	01	C23	3.275(3)
01	C24	3.337(3)	01	C29	2.932(3)
O2	C3	2.907(3)	O2	C4	3.265(3)
O2	C5	3.262(3)	O2	C16	3.581(4)
O2	C23	2.798(4)	N1	C3	2.712(3)
N1	C16	2.789(3)	N2	C14	2.813(3)
N2	C29	2.742(4)	C4	C14	3.527(4)
C4	B1	2.754(3)	C5	C15	3.555(4)
C6	C9	3.161(4)	C8	C11	2.811(4)
C8	C15	3.263(3)	С9	C12	2.790(4)
C10	C13	2.771(4)	C13	C14	3.167(4)
C13	C15	3.296(3)	C15	C18	3.308(4)
C15	C23	3.547(3)	C15	B1	3.004(4)
C16	C24	3.588(4)	C17	C20	2.778(3)
C18	C21	2.852(4)	C19	C22	2.782(4)
C21	C24	3.407(4)	C21	C25	3.458(4)
C22	C25	3.271(4)	C24	C27	2.803(4)
C24	B1	2.823(3)	C25	C28	2.794(4)
C26	C29	2.806(3)			

Intramolecular contacts less than 3.60 Å

atom	atom	distance	atom	atom	distance	
S1	H2	3.504	S1	H6	3.504	
01	H2	2.736	O2	H28	2.553	
N1	H6	3.165	N1	H15	3.265	
N2	H15	3.272	C3	H1	3.211	
C4	H1	3.410	C4	H2	3.255	
C4	H6	3.038	C6	Н9	2.940	
C7	H9	2.659	C7	H13	2.671	
C7	H15	2.861	C8	H6	2.887	
C8	H10	3.279	C8	H12	3.289	
C8	H15	3.070	С9	H6	3.115	
C9	H11	3.278	С9	H13	3.266	
C10	H12	3.261	C11	Н9	3.275	
C11	H13	3.265	C12	H10	3.259	
C13	H9	3.268	C13	H11	3.271	
C13	H15	2.775	C14	Н6	3.197	
C14	H13	2.962	C15	H13	2.831	
C15	H18	3.177	C16	H18	2.862	
C17	H15	2.834	C17	H19	3.256	
C17	H21	3.319	C18	H15	3.145	
C18	H20	3.283	C19	H21	3.296	
C20	H18	3.295	C21	H19	3.283	
C21	H25	2.903	C22	H18	3.318	
C22	H20	3.253	C22	H25	3.055	
C23	H21	2.890	C23	H25	2.713	
C24	H21	3.281	C24	H26	3.291	
C24	H28	3.301	C25	H21	2.948	
C25	H27	3.255	C26	H28	3.282	
C27	H25	3.256	C28	H26	3.283	
C29	H25	3.296	C29	H27	3.269	
H1	H2	2.428	H6	H9	2.734	
H9	H10	2.340	H10	H11	2.336	
H11	H12	2.346	H12	H13	2.338	
H13	H15	2.293	H15	H18	2.751	
H18	H19	2.348	H19	H20	2.333	
H20	H21	2.341	H21	H25	2.241	

Intramolecular contacts less than 3.60 Å involving hydrogens

H25	H26	2.325	H26	H27	2.343
H27	H28	2.339			

Intermolecular contacts less than 3.60 Å

atom	atom	distance	atom	atom	distance	
C3	C18 ¹	3.447(4)	C4	C18 ¹	3.390(4)	
C5	$C5^2$	3.522(4)	C5	$C6^2$	3.348(4)	
C5	C18 ¹	3.425(4)	C6	$C5^2$	3.348(4)	
C10	$C20^{3}$	3.564(4)	C13	C23 ¹	3.387(4)	
C15	C16 ¹	3.529(4)	C16	C15 ¹	3.529(4)	
C17	$C27^{4}$	3.531(4)	C18	$C3^1$	3.447(4)	
C18	$C4^1$	3.390(4)	C18	$C5^1$	3.425(4)	
C20	C10 ⁵	3.564(4)	C21	C21 ⁶	3.455(4)	
C21	C28 ⁴	3.386(4)	C22	C27 ⁴	3.460(4)	
C22	C28 ⁴	3.361(4)	C23	C13 ¹	3.387(4)	
C27	C17 ⁴	3.531(4)	C27	$C22^4$	3.460(4)	
C28	C21 ⁴	3.386(4)	C28	$C22^4$	3.361(4)	

Symmetry Operators:

(1)	-X+1,-Y+1,-Z+1	(2)	-X+1,-Y+2,-Z+1
(3)	X,Y+1,Z-1	(4)	-X+1,-Y+1,-Z+2
(5)	X,Y-1,Z+1	(6)	-X+1,-Y,-Z+2

atom	atom	distance	atom	atom	distance
S1	$H1^1$	3.176	S1	H9 ²	3.300
S1	H19 ³	3.293	S1	H26 ⁴	2.994
01	H13 ³	3.024	01	H15 ³	3.153
01	H18 ³	2.955	O2	H6 ²	3.025
O2	H9 ²	2.748	N1	H6 ²	3.425
N2	H13 ³	2.849	N2	H15 ³	3.571
C1	H9 ²	3.479	C1	H15 ⁵	3.298
C2	H9 ²	3.353	C2	H15 ⁵	3.451
C2	H18 ⁵	3.578	C2	H18 ³	3.203
C3	H9 ²	2.995	C3	H18 ³	2.750
C4	H9 ²	2.893	C4	H18 ³	3.027
C4	H19 ³	3.543	C5	$H6^{2}$	3.349
C5	H18 ³	3.363	C8	$H1^{6}$	3.072
C8	H20 ⁴	3.289	С9	$H1^{6}$	3.439
C9	H20 ⁴	3.262	С9	H28 ²	2.997
C10	H20 ⁴	3.127	C10	H26 ⁷	3.281
C10	H28 ²	3.019	C11	H11 ⁸	3.159
C11	H12 ⁸	3.295	C11	H19 ⁹	2.979
C11	$H20^4$	2.995	C11	H26 ⁷	3.306
C12	$H1^6$	3.451	C12	H11 ⁸	3.036
C12	H19 ⁹	2.855	C12	$H20^{4}$	2.978
C13	$H1^{6}$	3.088	C13	$H20^4$	3.124
C14	H1 ⁶	3.544	C15	H1 ⁶	3.234
C16	$H13^{3}$	3.553	C16	H27 ¹⁰	3.383
C17	$H27^{10}$	3.080	C18	$H2^6$	3.246
C18	$H27^{10}$	3.374	C19	H11 ⁹	3.461
C19	H12 ⁹	3.187	C19	H25 ¹¹	3.597
C20	$H21^{11}$	2.977	C20	H25 ¹¹	3.128
C20	H28 ¹⁰	3.223	C21	$H20^{11}$	3.285
C21	$H21^{11}$	3.018	C21	H28 ¹⁰	2.845
C22	$H13^{3}$	3.214	C22	$H27^{10}$	3.349
C22	H28 ¹⁰	3.172	C23	$H13^{3}$	2.701
C24	$H13^{3}$	3.236	C25	H11 ¹²	3.261
C25	$H12^3$	3.583	C25	$H20^{11}$	3.415
C^{26}	$H10^{12}$	3 058	C26	H11 ¹²	3 121

C27	$H10^{12}$	3.120	C28	$H9^2$	3.322
C28	H10 ²	3.452	C28	H21 ¹⁰	3.498
C29	$H9^2$	3.460	B1	H9 ²	3.590
B1	H13 ³	3.463	H1	$S1^1$	3.176
H1	C8 ⁵	3.072	H1	C9 ⁵	3.439
H1	C12 ⁵	3.451	H1	C13 ⁵	3.088
H1	C14 ⁵	3.544	H1	C15 ⁵	3.234
H1	$H1^1$	3.554	H1	H13 ⁵	3.401
H1	H15 ⁵	2.680	H2	C18 ⁵	3.246
H2	H15 ⁵	3.011	H2	H18 ⁵	2.699
H2	H18 ³	3.599	H2	H27 ¹³	3.147
H6	$O2^2$	3.025	H6	$N1^2$	3.425
H6	$C5^2$	3.349	Н6	H21 ⁴	3.117
H6	H25 ⁴	3.130	H6	H26 ⁴	3.535
H9	S1 ²	3.300	Н9	$O2^2$	2.748
H9	$C1^2$	3.479	Н9	$C2^2$	3.353
H9	$C3^2$	2.995	Н9	$C4^2$	2.893
H9	$C28^{2}$	3.322	Н9	C29 ²	3.460
H9	$B1^2$	3.590	Н9	H28 ²	2.645
H10	C26 ⁷	3.058	H10	C27 ⁷	3.120
H10	$C28^{2}$	3.452	H10	H26 ⁷	2.875
H10	$H27^7$	2.971	H10	H28 ²	2.696
H11	C11 ⁸	3.159	H11	C12 ⁸	3.036
H11	C19 ⁹	3.461	H11	C25 ⁷	3.261
H11	C26 ⁷	3.121	H11	$H11^{8}$	2.834
H11	$H12^{8}$	2.583	H11	H19 ⁹	2.654
H11	$H20^4$	3.467	H11	H20 ⁹	3.293
H11	$H25^7$	3.159	H11	H26 ⁷	2.921
H12	C11 ⁸	3.295	H12	C19 ⁹	3.187
H12	$C25^{3}$	3.583	H12	$H11^{8}$	2.583
H12	H19 ⁹	2.426	H12	H20 ⁴	3.425
H13	O1 ³	3.024	H13	$N2^3$	2.849
H13	C16 ³	3.553	H13	$C22^3$	3.214
H13	C23 ³	2.701	H13	C24 ³	3.236
H13	B1 ³	3.463	H13	$H1^{6}$	3.401
H15	O1 ³	3.153	H15	$N2^3$	3.571
H15	C1 ⁶	3.298	H15	$C2^{6}$	3.451

H15	$H1^{6}$	2.680	H15	H2 ⁶	3.011
H18	O1 ³	2.955	H18	C2 ⁶	3.578

Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom	distance	atom	atom	distance	
H18	$C2^3$	3.203	H18	C3 ³	2.750	
H18	$C4^3$	3.027	H18	C5 ³	3.363	
H18	$H2^{6}$	2.699	H18	$H2^3$	3.599	
H19	S1 ³	3.293	H19	C4 ³	3.543	
H19	C11 ⁹	2.979	H19	C12 ⁹	2.855	
H19	H11 ⁹	2.654	H19	H12 ⁹	2.426	
H19	H25 ¹¹	3.451	H20	$C8^{14}$	3.289	
H20	C9 ¹⁴	3.262	H20	$C10^{14}$	3.127	
H20	C11 ¹⁴	2.995	H20	C12 ¹⁴	2.978	
H20	C13 ¹⁴	3.124	H20	$C21^{11}$	3.285	
H20	C25 ¹¹	3.415	H20	$H11^{14}$	3.467	
H20	H11 ⁹	3.293	H20	$H12^{14}$	3.425	
H20	H21 ¹¹	2.740	H20	H25 ¹¹	2.589	
H20	H28 ¹⁰	3.560	H21	$C20^{11}$	2.977	
H21	C21 ¹¹	3.018	H21	$C28^{10}$	3.498	
H21	$H6^{14}$	3.117	H21	$H20^{11}$	2.740	
H21	H21 ¹¹	2.844	H21	$H28^{10}$	2.958	
H25	C19 ¹¹	3.597	H25	$C20^{11}$	3.128	
H25	$H6^{14}$	3.130	H25	$H11^{12}$	3.159	
H25	H19 ¹¹	3.451	H25	$H20^{11}$	2.589	
H26	$S1^{14}$	2.994	H26	$C10^{12}$	3.281	
H26	C11 ¹²	3.306	H26	$H6^{14}$	3.535	
H26	$H10^{12}$	2.875	H26	$H11^{12}$	2.921	
H27	$C16^{10}$	3.383	H27	$C17^{10}$	3.080	
H27	$C18^{10}$	3.374	H27	$C22^{10}$	3.349	
H27	$H2^{13}$	3.147	H27	$H10^{12}$	2.971	
H28	C9 ²	2.997	H28	C10 ²	3.019	
H28	$C20^{10}$	3.223	H28	C21 ¹⁰	2.845	
H28	$C22^{10}$	3.172	H28	H9 ²	2.645	
H28	H10 ²	2.696	H28	$H20^{10}$	3.560	

Symmetry Operators:

- J J - F	
(1) $-X+2, -Y+2, -Z+1$	(2) $-X+1, -Y+2, -Z+1$
(3) -X+1,-Y+1,-Z+1	(4) $X,Y+1,Z-1$
(5) X+1,Y,Z	(6) X-1,Y,Z
(7) $X-1,Y+1,Z-1$	(8) -X,-Y+2,-Z
(9) -X,-Y+1,-Z+1	(10) -X+1,-Y+1,-Z+2
(11) -X+1,-Y,-Z+2	(12) X+1,Y-1,Z+1
(13) -X+2,-Y+1,-Z+2	(14) X,Y-1,Z+1
Calculation results

Center	Atomic	Atomic	Coordi	nates (Angstro	oms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.818228	5.002385	-0.555804
2	6	0	-3.215522	3.688237	-0.410199
3	6	0	-2.233808	2.690565	-0.392110
4	6	0	-0.862611	3.032169	-0.489648
5	6	0	-0.474651	4.367924	-0.626708
6	6	0	-1.457307	5.337464	-0.666904
7	6	0	-2.288055	1.256432	-0.217024
8	7	0	-1.049938	0.780305	-0.305185
9	6	0	-0.109112	1.811773	-0.368197
10	5	0	-0.740773	-0.697362	-0.018553
11	7	0	0.755606	-0.777705	0.184555
12	6	0	1.665521	0.259114	0.185463
13	6	0	1.211056	1.561912	-0.082439
14	6	0	1.409267	-1.955646	0.141694
15	6	0	2.784913	-1.703012	0.262409
16	6	0	2.958385	-0.315507	0.273643
17	6	0	-3.311770	0.365743	0.280553
18	6	0	0.639304	-3.117119	-0.268122
19	6	0	4.245063	0.396960	0.315959
20	6	0	-4.688593	0.613303	0.185796
21	6	0	-5.598181	-0.182658	0.852108
22	6	0	-5.137075	-1.234918	1.649634
23	6	0	-3.786206	-1.507800	1.753808
24	6	0	-2.855022	-0.736006	1.053346
25	6	0	-0.577634	-2.869307	-0.950515
26	6	0	-1.269128	-3.935902	-1.523786
27	6	0	-0.784632	-5.228128	-1.404304
28	6	0	0.401297	-5.483433	-0.714730
29	6	0	1.106811	-4.429892	-0.161081
30	6	0	5.231104	-0.000632	1.225078
31	6	0	6.455007	0.651801	1.276501

Table S6. Atom coordinates and absolute energy levels for **1** optimized in the S₀ state. E(RCAM-B3LYP) = -1476.95930873

32	6	0	6.718063	1.715180	0.419744
33	6	0	5.750566	2.114226	-0.494694
34	6	0	4.527005	1.458926	-0.550085
35	8	0	-1.553987	-1.035684	1.157268
36	8	0	-1.079658	-1.621700	-1.089312
37	1	0	-3.563556	5.789919	-0.579057
38	1	0	-4.265480	3.444531	-0.303635
39	1	0	0.573251	4.639060	-0.702280
40	1	0	-1.176464	6.379472	-0.780019
41	1	0	1.916052	2.384456	-0.063540
42	1	0	3.572863	-2.441147	0.231759
43	1	0	-5.038092	1.427673	-0.438603
44	1	0	-6.661212	0.009392	0.760844
45	1	0	-5.848361	-1.856776	2.183862
46	1	0	-3.415349	-2.331288	2.352806
47	1	0	-2.192259	-3.721526	-2.050057
48	1	0	-1.340320	-6.048834	-1.846739
49	1	0	0.771288	-6.498182	-0.618351
50	1	0	2.038026	-4.612502	0.366419
51	1	0	5.020308	-0.818766	1.906030
52	1	0	7.205093	0.331947	1.992674
53	1	0	7.674500	2.225920	0.460685
54	1	0	5.953363	2.931777	-1.179131
55	1	0	3.794739	1.747632	-1.296434

Table S7. Atom coordinates and absolute energy levels for 2 optimized in the S_0 state. $E(RCAM-B3LYP) = -1797.74818873$									
Center	Atomic	Atomic	Coord	Coordinates (Angstroms)					
Number	Number	Туре	Х	Ŷ	Ż				
1	6	0	-3.137740	4.849419	-0.564491				
2	6	0	-3.462200	3.516641	-0.417276				
3	6	0	-2.427129	2.572528	-0.398944				
4	6	0	-1.075812	2.989591	-0.498698				
5	6	0	-0.762583	4.345873	-0.638179				
6	6	0	-1.796323	5.259174	-0.677997				
7	6	0	-2.402499	1.140903	-0.221207				
8	7	0	-1.137247	0.734406	-0.307604				
9	6	0	-0.257179	1.815186	-0.376822				
10	5	0	-0.748253	-0.720924	-0.022287				
11	7	0	0.754180	-0.721833	0.179079				
12	6	0	1.602988	0.369969	0.181221				
13	6	0	1.078974	1.639759	-0.091597				
14	6	0	1.487753	-1.857592	0.139549				
15	6	0	2.845190	-1.519694	0.282289				
16	6	0	2.928889	-0.126532	0.288183				
17	6	0	-3.374957	0.193882	0.278559				
18	6	0	0.768886	-3.016324	-0.297771				
19	6	0	4.168340	0.664528	0.344350				
20	6	0	-4.763023	0.364011	0.185529				
21	6	0	-5.626914	-0.484079	0.849866				
22	6	0	-5.108298	-1.512495	1.641836				
23	6	Ō	-3.743487	-1.710504	1.742401				
24	6	Ō	-2.858467	-0.883798	1.046387				
25	6	Ō	4.396829	1.736075	-0.525419				
26	6	Õ	5.577179	2,465205	-0.457361				
20 27	6	Ő	6.553419	2.132131	0.474064				
28	6	Ő	6.343386	1.060415	1.335044				
29	6	Ő	5.162820	0.333549	1.270642				
30	6	Ő	-0.427239	-2.845950	-0.980753				
31	6	Ő	-0.895109	-4 052455	-1 579700				
32	6	0	-0.059862	-5 097196	-1 341004				
33	16	0	1 316509	-4 658782	-0 390191				
33	10	U	1.310309	-+.030/02	-0.390191				

34	8	0	-1.540942	-1.112619	1.146859
35	8	0	-1.051610	-1.666802	-1.102712
36	1	0	-3.925022	5.595078	-0.587557
37	1	0	-4.497287	3.216233	-0.309587
38	1	0	0.268757	4.674151	-0.715773
39	1	0	-1.573701	6.315007	-0.792668
40	1	0	1.736349	2.500713	-0.074853
41	1	0	3.675824	-2.209958	0.266890
42	1	0	-5.158071	1.160531	-0.434694
43	1	0	-6.698991	-0.349744	0.760611
44	1	0	-5.783230	-2.174812	2.174584
45	1	0	-3.326431	-2.514326	2.337837
46	1	0	3.658854	1.974738	-1.283647
47	1	0	5.739734	3.289217	-1.144737
48	1	0	7.476041	2.700867	0.525054
49	1	0	7.100866	0.791982	2.064380
50	1	0	4.992469	-0.491762	1.954218
51	1	0	-1.814851	-4.113774	-2.146021
52	1	0	-0.187305	-6.124970	-1.649234

Table S8 . E(RCAM-	Table S8 . Atom coordinates and absolute energy levels for 3 optimized in the S ₀ state. E(RCAM-B3LYP) = -1797.75150905							
Center	Atomic	Atomic	Coordi	nates (Angstro	oms)			
Number	Number	Type	Х	Ý	Ź			
1	6	0	3.170804	-4.712021	-0.689331			
2	6	0	3.462388	-3.372872	-0.509776			
3	6	0	2.400029	-2.469315	-0.439785			
4	6	0	1.059474	-2.908984	-0.532426			
5	6	0	0.779971	-4.266615	-0.701646			
6	6	0	1.839815	-5.151295	-0.784066			
7	6	0	2.347777	-1.042209	-0.214384			
8	7	0	1.075158	-0.645084	-0.310007			
9	6	0	0.213066	-1.749373	-0.378558			
10	5	0	0.648164	0.802332	-0.030380			
11	7	0	-0.844048	0.766154	0.178709			
12	6	0	-1.671424	-0.336991	0.183090			
13	6	0	-1.116152	-1.606743	-0.088037			
14	6	0	-1.588487	1.893557	0.142005			
15	6	0	-2.935416	1.534925	0.267683			
16	6	0	-3.000533	0.134068	0.277404			
17	6	0	3.255467	-0.100349	0.329484			
18	6	Ō	-0.909832	3.112000	-0.268817			
19	6	Ō	-4.229364	-0.674113	0.323916			
20	6	Ō	2.730794	0.947300	1.092568			
21	6	0	0.323428	2.962318	-0.948905			
22	6	Õ	0.934020	4.079598	-1.515556			
23	6	Õ	0.351457	5.331315	-1.395283			
24	6	Õ	-0.851750	5.491602	-0.708504			
25	6	Õ	-1.475440	4.384766	-0.158762			
26	6	Õ	-4.433234	-1.755121	-0.540614			
20	6	Ő	-5.603227	-2.501599	-0.481207			
28	6	Ő	-6.596033	-2.176396	0.435379			
29	6	õ	-6.411837	-1.095146	1.290325			
30	6	Ő	-5.240766	-0.352198	1.235259			
31	8	Ő	1 441866	1 230018	1 157493			
32	8	Ő	0 923003	1 755880	-1 088271			
33	16	0	4 976629	-0 233055	0 539255			
55	10	U	7.770027	-0.233033	0.557255			

34	6	0	4.969686	1.102798	1.636558
35	6	0	3.734728	1.625537	1.847141
36	1	0	3.976373	-5.434989	-0.755932
37	1	0	4.490394	-3.036660	-0.428595
38	1	0	-0.242787	-4.621522	-0.773036
39	1	0	1.641551	-6.208923	-0.924145
40	1	0	-1.755813	-2.480796	-0.070860
41	1	0	-3.779622	2.208241	0.239743
42	1	0	1.871885	3.937601	-2.040477
43	1	0	0.843255	6.193304	-1.834806
44	1	0	-1.299835	6.474277	-0.610406
45	1	0	-2.418926	4.494087	0.367197
46	1	0	-3.683331	-1.987989	-1.288978
47	1	0	-5.745148	-3.332850	-1.164568
48	1	0	-7.510921	-2.758128	0.479269
49	1	0	-7.182215	-0.832026	2.008133
50	1	0	-5.090997	0.480326	1.914984
51	1	0	5.906068	1.450411	2.049545
52	1	0	3.520000	2.467508	2.491121

Table S9. Atom coordinates and absolute energy levels for 4 optimized in the S ₀ state. E(RCAM-B3LYP) = -2118.53992626								
Center	Atomic	Atomic	Coordi	inates (Angstro	oms)			
Number	Number	Туре	Х	Ý	Ź			
1	6	0	3.455395	-4.551695	-0.693384			
2	6	0	3.678158	-3.200622	-0.511947			
3	6	0	2.570855	-2.350630	-0.444570			
4	6	0	1.253733	-2.858243	-0.541961			
5	6	0	1.044723	-4.229389	-0.713724			
6	6	0	2.147692	-5.058315	-0.793232			
7	6	0	2.446085	-0.931033	-0.217620			
8	7	0	1.153198	-0.599700	-0.312784			
9	6	0	0.350464	-1.745528	-0.388998			
10	5	0	0.654143	0.822903	-0.035705			
11	7	0	-0.839385	0.712325	0.170926			
12	6	0	-1.605691	-0.438263	0.177681			
13	6	0	-0.987640	-1.672084	-0.098487			
14	6	0	-1.656916	1.793715	0.137120			
15	6	0	-2.980152	1.356817	0.284018			
16	6	0	-2.959838	-0.043178	0.289810			
17	6	0	3.303541	0.057292	0.329698			
18	6	0	-1.023226	3.003138	-0.303230			
19	6	0	-4.138482	-0.922189	0.351131			
20	6	0	0.183276	2.925127	-0.980386			
21	6	0	2.726496	1.080769	1.084494			
22	6	Ō	-4.292516	-2.008806	-0.516478			
${23}$	6	Ō	-5.416319	-2.821991	-0.443151			
24	6	Ō	-6.411319	-2.559409	0.490973			
25	6	Ō	-6.276609	-1.473606	1.349361			
26	6	Ō	-5.151845	-0.663379	1.280078			
20 27	× 8	Õ	1.422427	1.298506	1.144958			
28	8	Õ	0.895152	1.792645	-1.103728			
29	6	Õ	0.569419	4.166579	-1.565516			
30	6	Ő	-0.338787	5.148157	-1.324143			
31	16	Ő	-1 684394	4 603683	-0 384230			
32	16	0	5 029054	0.017006	0 538094			
32	6	0	4 954089	1 358885	1 625230			
55	0	U	T.75T009	1.550005	1.025250			

34	6	0	3.693069	1.817955	1.831706
35	1	0	4.296596	-5.233122	-0.757839
36	1	0	4.687625	-2.812893	-0.427238
37	1	0	0.041566	-4.635813	-0.789122
38	1	0	2.004229	-6.124564	-0.934938
39	1	0	-1.580679	-2.578348	-0.083201
40	1	0	-3.860927	1.981979	0.270455
41	1	0	-3.542052	-2.194197	-1.277376
42	1	0	-5.520803	-3.656723	-1.128969
43	1	0	-7.290089	-3.193519	0.545881
44	1	0	-7.049340	-1.259253	2.080681
45	1	0	-5.039849	0.173429	1.961777
46	1	0	1.484725	4.296705	-2.127532
47	1	0	-0.285095	6.184160	-1.625826
48	1	0	5.871094	1.756741	2.036176
49	1	0	3.434451	2.651859	2.470104

Center	Atomic	Atomic	Coordi	nates (Angstro	oms)
Number	Number	Туре	X	Y	Z
1	6	0	3.587185	-4.535103	-0.061715
2	6	0	3.791529	-3.171729	-0.082834
3	6	0	2.668979	-2.332184	-0.047625
4	6	0	1.366640	-2.869716	-0.020826
5	6	0	1.171168	-4.255274	0.000973
6	6	0	2.284709	-5.070350	-0.014777
7	6	0	2.534229	-0.899150	-0.075511
8	7	Ő	1.239962	-0.584486	-0.087144
9	6	Ő	0.470323	-1.753025	-0.034550
10	5	Ő	0.611056	0.873194	0.023422
11	7	Ő	-0.939143	0.723017	0.080699
12	6	0	-1.602354	-0.493642	0.054060
13	6	Ő	-0.894253	-1.697719	0.038297
14	6	0	-1.877661	1.705663	0.077120
15	6	0	-3.150949	1.118495	0.073555
16	6	0	-2.994925	-0.263398	0.051742
17	6	0	3.661790	0.046139	-0.064065
18	6	0	-1.632485	3.157602	0.042107
19	6	0	-4.063704	-1.272991	0.035137
20	6	0	4.688964	-0.158329	0.865284
21	6	0	5.797126	0.676100	0.886184
22	6	0	5.901923	1.715015	-0.031480
23	6	0	4.889372	1.919242	-0.961516
24	6	0	3.772614	1.095380	-0.980932
25	6	0	-0.620093	3.785782	0.773918
26	6	0	-0.484500	5.167076	0.736317
27	6	0	-1.350001	5.944266	-0.023866
28	6	0	-2.360289	5.329289	-0.754469
29	6	0	-2.500771	3.949935	-0.719671
30	6	0	-5.171277	-1.131808	0.878361
31	6	0	-6.194943	-2.068611	0.868957
32	6	0	-6.132559	-3.165783	0.016237
	•	-			

34	6	0	-4.019249	-2.373625	-0.827761
35	9	0	0.944244	1.617275	-1.089005
36	9	0	1.114045	1.416940	1.191371
37	1	0	4.436895	-5.208668	-0.087186
38	1	0	4.792190	-2.757642	-0.132336
39	1	0	0.173653	-4.681612	0.025841
40	1	0	2.157822	-6.147982	0.001358
41	1	0	-1.454484	-2.624279	0.086682
42	1	0	-4.084582	1.661293	0.079838
43	1	0	4.601767	-0.960159	1.590385
44	1	0	6.577883	0.515721	1.622272
45	1	0	6.770233	2.365775	-0.019839
46	1	0	4.965894	2.729058	-1.679367
47	1	0	2.978458	1.267715	-1.693274
48	1	0	0.058661	3.190890	1.368697
49	1	0	0.305391	5.638887	1.311809
50	1	0	-1.237256	7.023388	-0.048884
51	1	0	-3.037975	5.923993	-1.358463
52	1	0	-3.278480	3.472735	-1.306234
53	1	0	-5.213081	-0.285884	1.556639
54	1	0	-7.043237	-1.944704	1.534413
55	1	0	-6.932824	-3.898477	0.009847
56	1	0	-4.993522	-4.157081	-1.513852
57	1	0	-3.192840	-2.471892	-1.523719