Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2020

Materials Advances

Electronic Supplementary Information for

Unravelling the K-promotion effect in a highly active and stable Fe₅C₂ nanoparticle for catalytic linear α-olefin production

Jin Hee Lee,^{‡a} Hack-Keun Lee,^{‡a} Kwangsoo Kim,^{b,c} Geun Bae Rhim,^d Min Hye Youn,^d Heondo Jeong,^d Jong Hyeok Park,^c Dong Hyun Chun,^{d,*} Byung-Hyun Kim,^{b,*} Ji Chan Park ^{a,*}

^aClean Fuel Laboratory, Korea Institute of Energy Research, Daejeon, Republic of Korea.

^bPlatform Technology Laboratory, Korea Institute of Energy Research, Daejeon, Republic of Korea.

^cDepartment of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea.

^dCarbon Conversion Laboratory, Korea Institute of Energy Research, Daejeon, Republic of Korea.

[‡] These authors contributed equally to this work.

Figure S1. (a) Temperature profile as a function of time in first-principles molecular dynamics simulations for generating a reliable Fe_5C_2 nanoparticle structure. (b) Geometry optimized K-free Fe_5C_2 nanoparticle structures with different locations of two K atoms and total energy relative to their most stable configuration. Dark orange, grey and purple indicate Fe, C and K atoms, respectively.

Figure S2. Particle size distributions of (a) K-free Fe_5C_2 nanoparticles and (b) K-doped Fe_5C_2 nanoparticles in each catalyst. More than 200 particles were counted for the sample.

Figure S3. (a) Low-resolution TEM and (b) HRTEM images of the recovered K-Fe₅C₂@C/NPC nanocatalyst after the HT-FTS reaction for 78 h. The bars represent 500 nm (a) and 10 nm (b).

Figure S4. Geometry optimized structures of (a, e) 1-pentene, (b, f) 1-hexene, (c, g) 1-heptene and (d, h) 1-octene on (a-d) K-free Fe_5C_2 nanoparticle and (e-h) K- Fe_5C_2 nanoparticle. Dark orange, grey, white and purple balls represent Fe, C, H and K atoms, respectively.

Table S1. Comparison of the CO conversion and FTY values of the K-doped $Fe_5C_2@C/NPC$ nanocatalyst with those found in the literature for K-doped Fe catalysts to be used under high-temperature Fischer-Tropsch synthesis conditions.

Catalyst	GHSV (NL·g _{cat} -¹·h-¹)	Total CO conv. (%)	FTY (×10 ⁻⁴ mol _{co} ·g _{Fe} ⁻¹ ·s ⁻¹)	Ref.
K-Fe ₅ C ₂ @C/NPC (Fe: 33.7 wt%)	42	96.7	4.4	This work ^{a)}
K-Fe₅C₂/Charcoal (Fe = 20 wt%)	8	~ 94	1.54	[1] ^{b)}
0.5K-Fe₃C@C (Fe: 22.4 wt%)	15	74.8	2.69	[2] ^{c)}
0.6K38-Fe@C (Fe: 38 wt%)	60	93	4.38	[3] ^{d)}
KFe@C-MIL100 (Fe: 38.1wt%)	60	94.9	4.23	[4] ^{e)}
KFe@C-F300 (Fe: 35.7wt%)		91.7	4.59	
KG16Si (Fe: 16wt%)	3	84.8	0.39	[5] ^{f)}

Catalytic tests were carried out at a) T = 340° C, P = 1.5 MPa, H₂/CO ratio = 1, b) T = 320° C, P = 1.5 MPa, H₂/CO ratio = 1, c)T = 320° C, P = 2.0 MPa, H₂/CO ratio = 1, d)T = 340° C, P = 2.0 MPa, H₂/CO ratio = 1, e)T = 340° C, P = 2.0 MPa, H₂/CO ratio = 1. f) T = 340° C, P = 2.0 MPa, H₂/CO ratio = 1. f) T = 340° C, P = 2.0 MPa, H₂/CO ratio = 1.7,

References

[1] J. C. Park, S. C. Yeo, D. H. Chun, J. T. Lim, J.-I. Yang, H.-T. Lee, S. Hong, H. M. Lee, C. S. Kim and H. Jung, *J. Mater. Chem. A.*, 2014, **2**, 14371.

[2] Z. Tian, C. Wang, J. Yue, X. Zhang and L. Ma, Catal. Sci. Technol., 2019, 9, 2728.

[3] V. P. Santos, T. A. Wezendonk, J. J. D. Jaen, A. I. Dugulan, M. A. Nasalevich, H.-U. Islam, A. Chojecki, S. Sartipi, X. Sun, A. A. Hakeem, A. C. J. Koeken, M. Ruitenbeek, T. Davidian, G. R. Meima, G. Sanker, F. Kapteijn, M. Makkee and J. Gascon, *Nat. Commun.*, 2015, **6**, 6451.

[4] T. A. Wezendonk, Q. S. E. Warringa, V. P. Santos, A. Chojecki, M. Ruiteenbeek, G. Meima, M. Makkee, F. Kapteijn and J. Gascon, *Faraday Discuss*, 2017, **197**, 225.

[5] R. Xu, P. S. Vengsarkar, D. Roe and C. B. Roberts, *Energy Fuels*, 2017, **31**, 4343.