Supporting Information

Ultrathin and compact electron transport layer made from novel water-dispersed Fe₃O₄ nanoparticles to accomplish UV-stable perovskite solar cells

Song Fang,^{a+} Bo Chen,^{a+} Bangkai Gu,^a Linxing Meng,^a Hao Lu,^{a*} and Chang Ming Li^{a,b,c,d*}

a: Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.b: Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy

Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.

c: Institute of Advanced Cross-field Science and College of Life Science, Qingdao University, Qingdao 200671, P.R. China.

d: Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing,400715 P. R. China.

Email: luhaoshaobo@163.com, ecmli@swu.edu.cn

⁺ These authors contributed equally to this work

*Corresponding author

Figure S1 The photo of different solution (taken in our lab).

Figure S2 SEM images of a) 5nm and b) 20 nm samples.

Figure S4 XRD pattern of Fe_2O_3 film before and after annealed.

Figure S5 Absorbance measurement of ITO and Fe₂O₃ film with different method.

Figure S6 SEM images of perovskite on a) FeCl₃, b) 5 nm and c) 20 nm Fe_2O_3

samples

Figure S7 EQE and integrated J_{sc} of 10 nm Fe₃O₄ sample.

Figure S8. J-V curves of a) different concentration, b) temperature and c) spin speed samples.

Figure S9. Fitted EIS of different Fe₂O₃ layer samples.

Figure S10 a) TRPL and b) Fitted TRPL curves of different samples

Figure S11. Forward and reverse scan of 10 nm and FeCl₃ samples.

Figure S12. J-V curve of TiO₂ sample.

Sample	$V_{oc}(V)$	J _{sc} (mA cm ⁻²)	Fill Factor (%)	Efficiency (%)
FeCl ₃	0.78 ± 0.06	23.14 ± 0.06	43.52 ± 1.39	7.58 ± 0.32
5 nm	0.91 ± 0.04	24.65 ± 0.16	47.82 ± 4.58	10.78 ± 0.90
10 nm	0.97 ± 0.02	24.71 ± 0.21	54.60 ± 4.74	13.24 ± 1.14
20 nm	0.97 ± 0.02	24.93 ± 0.30	49.16 ± 3.84	11.96 ± 1.02

Table S1. Summary of photovoltaic parameters of solar cells with different ETLs

Sample	$R(\Omega)$	$R_{ct}\left(\Omega ight)$	$R_{rec}\left(\Omega ight)$
FeCl ₃	58.2	270	573
5 nm	54.1	136	465
10 nm	53.8	131	676
20 nm	61.3	147	577

Table S2. The fitted values of R_{ct} and R_{rec} for solar cells.