Electronic supplementary information for:

Exploring The Anion Chemical Space of Ln₂OF_{2-x}Cl_xH₂ (Ln = Y, La, Gd): An Electroelastic Material with High Mechanical Sensitivity and Energy Harvesting

Evgenii Strugovshchikov* and Aleksandr Pishtshev

Institute of Physics, University of Tartu, W.Ostwaldi 1, 50411 Tartu, Estonia E-mail: evgenii.strugovshchikov@ut.ee, aleksandr.pishtshev@ut.ee

CONTENTS

1.	Equilibrium atomic positions predicted for $Ln_2OF_{2-x}Cl_xH_2$ ($Ln = Y$, La , Gd)	S2
2.	Bond distances and bond angles in $Ln_2OF_{2-x}Cl_xH_2$ ($Ln = Y$, La , Gd)	S6
3.	Elastic properties of $Ln_2OF_{2-x}Cl_xH_2$ ($Ln = Y$, La , Gd)	S9
4.	Zone-centered optical vibrational modes calculated in the harmonic approximation	S12
5.	Simulation of X-ray diffraction patterns	S18
6.	Radial distribution function evaluated for the shortest interatomic distances	S22
7.	Piezoelectric properties of $Ln_2OF_{2-x}Cl_xH_2$ ($Ln = Y$, La , Gd)	S23
Ref	erences:	S25

1. Equilibrium atomic positions predicted for Ln₂OF_{2-x}Cl_xH₂ (Ln = Y, La, Gd)

P3m1 (156); $a = 3.712$ Å, $c = 6.941$ Å								
Atom	Wyckoff position	Symm.	Х	у	Z			
Y1	1a	3m.	0.0000	0.0000	0.6421			
Y2	1c	3m.	0.6667	0.3333	0.2102			
01	1c	3m.	0.6667	0.3333	0.5306			
F1	1a	3m.	0.0000	0.0000	0.0000			
F2	1b	3m.	0.3333	0.6667	0.7721			
H1	1a	3m.	0.0000	0.0000	0.3294			
H2	1b	3m.	0.3333	0.6667	0.2326			

Supplementary Table S1: Y₂OF₂H₂, P3m1

Supplementary Table S2: Y₂OF₂H₂, R3m

R3m (160); a = 3.657 Å, c = 22.014 Å								
Atom	Wyckoff position	Symm.	Х	у	Z			
Y1	3a	3m	0.0000	0.0000	0.0000			
Y2	3a	3m	0.0000	0.0000	0.4710			
01	3a	3m	0.0000	0.0000	0.3659			
F1	3a	3m	0.0000	0.0000	0.1964			
F2	3a	3m	0.0000	0.0000	0.6168			
H1	3a	3m	0.0000	0.0000	0.7927			
H2	3a	3m	0.0000	0.0000	0.0949			

Supplementary Table S3: La₂OF₂H₂, P3m1

P3m1 (156); a = 3.997 Å, c = 7.288 Å								
Atom	Wyckoff position	Symm.	Х	у	Z			
Lal	1a	3m.	0.0000	0.0000	0.6430			
La2	1b	3m.	0.3333	0.6667	0.2028			
01	1b	3m.	0.3333	0.6667	0.5279			
F1	1a	3m.	0.0000	0.0000	0.0000			
F2	1c	3m.	0.6667	0.3333	0.7740			
H1	1a	3m.	0.0000	0.0000	0.3250			
H2	lc	3m.	0.6667	0.3333	0.2464			

Supplementary Table S4: La₂OF₂H₂, R3m

R3m (160); a = 3.978 Å, c = 21.444 Å								
Atom	Wyckoff position	Symm.	Х	у	Z			
La1	3a	3m	0.0000	0.0000	0.0000			
La2	3a	3m	0.0000	0.0000	0.4847			
01	3a	3m	0.0000	0.0000	0.3705			
F1	3a	3m	0.0000	0.0000	0.2130			
F2	3a	3m	0.0000	0.0000	0.6163			
H1	3a	3m	0.0000	0.0000	0.8035			
H2	3a	3m	0.0000	0.0000	0.1046			

P3m1 (156); a = 3.783 Å, c = 7.026 Å								
Atom	Wyckoff position	Symm.	Х	у	Z			
Gd1	1a	3m.	0.0000	0.0000	0.6414			
Gd2	1c	3m.	0.6667	0.3333	0.2079			
01	1c	3m.	0.6667	0.3333	0.5287			
F1	1a	3m.	0.0000	0.0000	0.0000			
F2	1b	3m.	0.3333	0.6667	0.7722			
H1	1a	3m.	0.0000	0.0000	0.3289			
H2	1b	3m.	0.3333	0.6667	0.2338			

Supplementary Table S5: Gd₂OF₂H₂, P3m1

Supplementary Table S6: Gd₂OF₂H₂, R3m

R3m (160); a = 3.742 Å, c = 21.562 Å								
Atom	Wyckoff position	Symm.	Х	у	Z			
Gd1	3a	3m	0.0000	0.0000	0.0000			
Gd2	3a	3m	0.0000	0.0000	0.4760			
01	3a	3m	0.0000	0.0000	0.3676			
F1	3a	3m	0.0000	0.0000	0.2024			
F2	3a	3m	0.0000	0.0000	0.6159			
H1	3a	3m	0.0000	0.0000	0.7972			
H2	3a	3m	0.0000	0.0000	0.0981			

Supplementary Table S7: Y₂OFClH₂, P3m1

P3m1 (156); a = 3.735 Å, c = 8.181 Å								
Atom	Wyckoff position	Symm.	Х	у	Z			
Y1	1a	3m.	0.0000	0.0000	0.0000			
Y2	1b	3m.	0.3333	0.6667	0.3637			
O1	1b	3m.	0.3333	0.6667	0.0891			
F1	1c	3m.	0.6667	0.3333	0.8849			
Cl1	la	3m.	0.0000	0.0000	0.5930			
H1	la	3m.	0.0000	0.0000	0.2660			
H2	1c	3m.	0.6667	0.3333	0.3393			

Supplementary Table S8: Y₂OFClH₂, R3m

R3m (160); a = 3.712 Å, c = 25.933 Å								
Atom	Wyckoff position	Symm.	Х	у	Z			
Y1	3a	3m	0.0000	0.0000	0.0000			
Y2	3a	3m	0.0000	0.0000	0.4484			
01	3a	3m	0.0000	0.0000	0.3604			
F1	3a	3m	0.0000	0.0000	0.6270			
Cl1	3a	3m	0.0000	0.0000	0.1863			
H1	3a	3m	0.0000	0.0000	0.7724			
H2	3a	3m	0.0000	0.0000	0.0829			

P3m1 (156); $a = 4.048$ Å, $c = 8.374$ Å								
Atom	Wyckoff position	Symm.	Х	у	Z			
Lal	1a	3m.	0.0000	0.0000	0.6153			
La2	1c	3m.	0.6667	0.3333	0.2354			
01	1c	3m.	0.6667	0.3333	0.5166			
F1	1b	3m.	0.3333	0.6667	0.7185			
Cl1	1a	3m.	0.0000	0.0000	0.0000			
H1	1a	3m.	0.0000	0.0000	0.3342			
H2	1b	3m.	0.3333	0.6667	0.2672			

Supplementary Table S9: La₂OFClH₂, P3m1

Supplementary Table S10: La₂OFClH₂, R3m

R3m (160); a = 3.712 Å, c = 25.933 Å								
Atom	Wyckoff position	Symm.	Х	у	Z			
Lal	3a	3m	0.0000	0.0000	0.0000			
La2	3a	3m	0.0000	0.0000	0.4603			
01	3a	3m	0.0000	0.0000	0.3660			
F1	3a	3m	0.0000	0.0000	0.6315			
Cl1	3a	3m	0.0000	0.0000	0.2049			
H1	3a	3m	0.0000	0.0000	0.7823			
H2	3a	3m	0.0000	0.0000	0.0928			

Supplementary Table S11: Gd₂OFClH₂, P3m1

P3m1 (156); a = 3.812 Å, c = 8.181 Å								
Atom	Wyckoff position	Symm.	Х	у	Z			
Gd1	la	3m.	0.0000	0.0000	0.0000			
Gd2	1b	3m.	0.3333	0.6667	0.3693			
01	1b	3m.	0.3333	0.6667	0.0923			
F1	1c	3m.	0.6667	0.3333	0.8874			
Cl1	1a	3m.	0.0000	0.0000	0.6009			
H1	1a	3m.	0.0000	0.0000	0.2706			
H2	1c	3m.	0.6667	0.3333	0.3434			

Supplementary Table S12: Gd₂OFClH₂, R3m

R3m (160); a = 3.712 Å, c = 25.933 Å										
Atom	Wyckoff position	Symm.	Х	у	Z					
Lal	3a	3m	0.0000	0.0000	0.0000					
La2	3a	3m	0.0000	0.0000	0.4502					
01	3a	3m	0.0000	0.0000	0.3613					
F1	3a	3m	0.0000	0.0000	0.6274					
Cl1	3a	3m	0.0000	0.0000	0.1887					
H1	3a	3m	0.0000	0.0000	0.7735					
H2	3a	3m	0.0000	0.0000	0.0843					

	P3m1 (156); a = 3.939 Å, c = 8.292 Å										
Atom	Wyckoff position	Symm.	Х	у	Z						
Lal	la	3m.	0.0000	0.0000	0.6028						
Gd1	1c	3m.	0.6667	0.3333	0.2288						
01	1c	3m.	0.6667	0.3333	0.4995						
F1	1b	3m.	0.3333	0.6667	0.7163						
Cl1	la	3m.	0.0000	0.0000	0.0000						
H1	1a	3m.	0.0000	0.0000	0.3207						
H2	1b	3m.	0.3333	0.6667	0.2530						

Supplementary Table S13: LaGdOFClH₂, P3m1

Supplementary Table S14: LaGdOFClH₂, R3m

	R3m (160); a = 3.924 Å, c = 25.246 Å									
Atom	Wyckoff position	Symm.	Х	у	Z					
Lal	3a	3m	0.0000	0.0000	0.0000					
Gd1	3a	3m	0.0000	0.0000	0.4563					
01	3a	3m	0.0000	0.0000	0.3667					
F1	3a	3m	0.0000	0.0000	0.6277					
Cl1	3a	3m	0.0000	0.0000	0.1971					
H1	3a	3m	0.0000	0.0000	0.7806					
H2	3a	3m	0.0000	0.0000	0.0916					

Supplementary Table S15: Y₂OCl₂H₂, R3m

	R3m (160); a = 3.756 Å, c = 30.481 Å										
Atom	Wyckoff position	Symm.	Х	у	Z						
Y1	3a	3m	0.0000	0.0000	0.0000						
Y2	3a	3m	0.0000	0.0000	0.4307						
01	3a	3m	0.0000	0.0000	0.3545						
Cl1	3a	3m	0.0000	0.0000	0.1563						
Cl2	3a	3m	0.0000	0.0000	0.6094						
H1	3a	3m	0.0000	0.0000	0.7540						
H2	3a	3m	0.0000	0.0000	0.0698						

Supplementary Table S16: La₂OCl₂H₂, R3m

	R3m (160); a = 4.056 Å, c = 30.999 Å										
Atom	Wyckoff position	Symm.	Х	у	Z						
La1	3a	3m	0.0000	0.0000	0.0000						
La2	3a	3m	0.0000	0.0000	0.4356						
01	3a	3m	0.0000	0.0000	0.3561						
Cl1	3a	3m	0.0000	0.0000	0.1619						
Cl2	3a	3m	0.0000	0.0000	0.6092						
H1	3a	3m	0.0000	0.0000	0.7548						
H2	3a	3m	0.0000	0.0000	0.0739						

R3m (160); $a = 3.824$ Å, $c = 30.722$ Å										
Atom	Wyckoff position	Symm.	Х	у	Z					
Gd1	3a	3m	0.0000	0.0000	0.0000					
Gd2	3a	3m	0.0000	0.0000	0.4316					
01	3a	3m	0.0000	0.0000	0.3549					
Cl1	3a	3m	0.0000	0.0000	0.1570					
Cl2	3a	3m	0.0000	0.0000	0.6096					
H1	3a	3m	0.0000	0.0000	0.7545					
H2	3a	3m	0.0000	0.0000	0.0704					

Supplementary Table S17: Gd₂OCl₂H₂, R3m

2. Bond distances and bond angles in $Ln_2OF_{2-x}Cl_xH_2$ (Ln = Y, La, Gd)

Supplementary Table S18: Bond distances (in Å) and bond angles (in degrees) in Y₂OF₂H₂

	Y ₂ O	F ₂ H ₂ , P3m1		$Y_2OF_2H_2$, R3m			
Bond	Value	Angle	Value	Bond	Value	Angle	Value
Y1 – Y2	3.68			Y1 – Y2	3.69		
Y1 – O1	2.28	Y1 - O1 - Y2	109.9	Y1 – O1	2.23	Y1 - O1 - Y2	108.8
Y2 – O1	2.22			Y2 – O1	2.31		
Y1 – H2	2.17	Y2 - H1 - H2	166.8	Y1 – H2	2.09	Y2 - H1 - H2	169.0
Y2 – H1	2.15			Y2 – H1	2.13		
H1 – H2	2.25			H1 – H2	2.22		
H2 – F1	2.29	Y1 - H2 - F1	180.0	H2 - F1	2.23	Y1 - H2 - F1	180.0
Y1 - F2	2.33	Y2 - F1 - F2	177.8	Y1 - F2	2.38	Y1 - F2 - F1	165.2
Y1 – F1	2.48			Y2 - F2	3.21		
Y2 – F1	2.59			Y2 - F1	2.48		
F2 - F1	2.66			F2 - F1	2.85		

Supplementary Table S19: Bond distances (in Å) and bond angles (in degrees) in La₂OF₂H₂

	La ₂ O	F_2H_2 , P3m1		$La_2OF_2H_2, R3m$			
Bond	Value	Angle	Value	Bond	Value	Angle	Value
La1 – La2	3.95			La1 – La2	3.98		
La1 – O1	2.46	La1 – O1 – La2	110.0	La1 – O1	2.43	La1 – O1 – La2	109.1
La2 – O1	2.37			La2 – O1	2.45		
La1 – H2	2.32	La2 – H1 – H2	173.9	La1 – H2	2.24	La2 – H1 – H2	170.9
La2 – H1	2.33			La2 – H1	2.32		
H1 – H2	2.38			H1 - H2	2.40		
H2 – F1	2.37	La1 – H2 – F1	180.0	H2 – F1	2.33	La1 – H2 – F1	180.0
La1 – F2	2.50	La1 – F1 – F2	177.1	La1 – F2	2.54	La1 – F2 – F1	172.1
La1 – F1	2.60			La1 – F1	3.45		
La2 – F1	2.74			La2 – F1	2.65		
F2 - F1	2.84			F2 - F1	2.74		

	Gd ₂ O	F ₂ H ₂ , P3m1		Gd ₂ OF ₂ H ₂ , R3m			
Bond	Value	Angle	Value	Bond	Value	Angle	Value
Gd1 – Gd2	3.75			Gd1 – Gd2	3.76		
Gd1 – O1	2.32	Gd1 - O1 - Gd2	109.9	Gd1 – O1	2.28	Gd1 - O1 - Gd2	108.9
Gd2 – O1	2.25			Gd2 – O1	2.34		
Gd1 – H2	2.20	Gd2 – H1 – H2	167.8	Gd1 – H2	2.11	Gd2 – H1 – H2	168.9
Gd2 – H1	2.19			Gd2 – H1	2.18		
H1 – H2	2.28			H1 – H2	2.27		
H2 - F1	2.31	Gd1 – H2 – F1	180.0	H2 – F1	2.25	Gd1 – H2 – F1	180.0
Gd1 – F2	2.37	Gd1 - F1 - F2	177.5	Gd1 – F2	2.42	Gd1 – F2 – F1	168.2
Gd1 – F1	2.52			Gd2 – F2	3.02		
Gd2 – F1	2.63			Gd2 – F1	2.51		
F2 – F1	2.71			F2 – F1	2.77		

Supplementary Table S20: Bond distances (in Å) and bond angles (in degrees) in Gd₂OF₂H₂

Supplementary Table S21: Bond distances (in Å) and bond angles (in degrees) in Y₂OFClH₂

	Y ₂ OF	ClH ₂ , P3m1		Y ₂ OFClH ₂ , R3m			
Bond	Value	Angle	Value	Bond	Value	Angle	Value
Y1 – Y2	3.67			Y1 – Y2	3.67		
Y1 – O1	2.28	Y1 - O1 - Y2	108.7	Y1 – O1	2.26	Y1 - O1 - Y2	108.2
Y2 – O1	2.25			Y2 – O1	2.28		
Y1 – H2	2.18	Y2 - H1 - H2	169.7	Y1 – H2	2.15	Y2 - H1 - H2	171.0
Y2 – H1	2.17			Y2 – H1	2.16		
H1 – H2	2.24			H1 – H2	2.22		
H2 – Cl1	2.68	Y1 - H2 - C11	180.0	H2 – Cl1	2.68	Y1 - H2 - C11	180.0
Y1 – F1	2.35	Y2 - C11 - F1	173.1	Y1 – F1	2.38	Y1 - F1 - C11	153.2
Y1 – Cl1	3.33			Y2 – F1	4.63		
Y2 – Cl1	2.86			Y2 - Cl1	2.83		
Cl1 – F1	3.22			Cl1 – F1	3.51		

Supplementary Table S22: Bond distances (in Å) and bond angles (in degrees) in La₂OFClH₂

	La ₂ O	FCIH ₂ , P3m1		La ₂ OFClH ₂ , R3m			
Bond	Value	Angle	Value	Bond	Value	Angle	Value
La1 – La2	3.95			La1 – La2	3.94		
La1 – O1	2.48	La1 – O1 – La2	109.5	La1 – O1	2.47	La1 – O1 – La2	109.4
La2 – O1	2.36			La2 – O1	2.36		
La1 – H2	2.35	La2 – H1 – H2	173.0	La1 – H2	2.33	La2 – H1 – H2	173.1
La2 – H1	2.35			La2 – H1	2.35		
H1 – H2	2.40			H1 – H2	2.40		
H2 – Cl1	2.80	La1 – H2 – Cl1	180.0	H2 – Cl1	2.81	La1 – H2 – Cl1	180.0
La1 – F1	2.49	La2 - Cl1 - F1	174.9	La1 – F1	2.49	La1 – F1 – Cl1	155.7
La1 – Cl1	3.22			La2 – F1	4.29		
La2 – Cl1	3.06			La2 – Cl1	3.04		
Cl1 – F1	3.32			Cl1 – F1	3.30		

	Gd ₂ OI	FCIH ₂ , P3m1		Gd ₂ OFClH ₂ , R3m			
Bond	Value	Angle	Value	Bond	Value	Angle	Value
Gd1 – Gd2	3.74			Gd1 – Gd2	3.74		
Gd1 – O1	2.33	Gd1 - O1 - Gd2	108.9	Gd1 – O1	2.30	Gd1 - O1 - Gd2	108.4
Gd2 – O1	2.27			Gd2 – O1	2.30		
Gd1 – H2	2.21	Gd2 – H1 – H2	170.4	Gd1 – H2	2.18	Gd2 - H1 - H2	171.8
Gd2 – H1	2.21			Gd2 – H1	2.20		
H1 – H2	2.28			H1 - H2	2.26		
H2 – Cl1	2.70	Gd1 – H2 – Cl1	180.0	H2 – Cl1	2.71	Gd1 – H2 – Cl1	180.0
Gd1 – F1	2.39	Gd2 - F1 - Cl1	173.9	Gd1 – F1	2.41	Gd1 – F1 – Cl1	153.7
Gd1 – Cl1	3.26			Gd2 – F1	4.59		
Gd2 – Cl1	2.90			Gd2 – Cl1	2.87		
Cl1 – F1	3.21			Cl1 – F1	3.50		

Supplementary Table S23: Bond distances (in Å) and bond angles (in degrees) in Gd₂OFClH₂

Supplementary Table S24: Bond distances (in Å) and bond angles (in degrees) in LaGdOFClH₂

	LaGdO	FCIH ₂ , P3m1		LaGdO	FClH ₂ , R3m		
Bond	Value	Angle	Value	Bond	Value	Angle	Value
La1 – Gd1	3.85			La1 – Gd1	3.84		
Gd1 – O1	2.24	Gd1 – O1 – La1	110.6	Gd1 – O1	2.26	Gd1 – O1 – La1	110.4
La1 – O1	2.43			La1 – O1	2.42		
La1 – H2	2.34	Gd1 – H1 – H2	171.2	La1 – H2	2.31	Gd1 – H1 – H2	171.7
Gd1 – H1	2.28			Gd1 – H1	2.28		
H1 – H2	2.34			H1 – H2	2.33		
H2 – Cl1	2.66	La1 – H2 – Cl1	180.0	H2 – Cl1	2.66	La1 – H2 – Cl1	180.0
La1 – F1	2.46	Gd1 – Cl1 – F1	173.9	La1 – F1	2.47	La1 – F1 – Cl1	156.2
La1 – Cl1	3.29			Gd1 – F1	4.33		
Gd1 – Cl1	2.96			Gd1 – Cl1	2.93		
Cl1 – F1	3.27			Cl1 – F1	3.34		

Supplementary Table S25: Bond distances (in Å) and bond angles (in degrees) in $Y_2OCl_2H_2$ and $La_2OCl_2H_2$

	Y ₂ O	Cl ₂ H ₂ , R3m			La ₂ O	Cl ₂ H ₂ , R3m	
Bond	Value	Angle	Value	Bond	Value	Angle	Value
Y1 – Y2	3.68			La1 – La2	3.94		
Y1 – O1	2.26	Y1 - O1 - Y2	106.6	La1 – O1	2.45	La1 – O1 – La2	
Y2 – O1	2.32			La2 – O1	2.47		
Y1 – H2	2.13	Y2 - H1 - H2	174.2	La1 – H2	2.29	La2 – H1 – H2	180.0
Y2 – H1	2.19			La2 – H1	2.38		
H1 – H2	2.23			H1 – H2	2.38		
H2 – Cl1	2.64	Y1 - H2 - C11	180.0	H2 – Cl1	2.73	La1 – H2 – Cl1	180.0
Y1 – Cl2	2.78	Y2 - Cl1 - Cl2	159.5	La1 – Cl2	2.94	La1 – Cl2 – Cl1	160.8
Y2 - Cl2	5.45			La2 – Cl2	5.38		
Y2 – Cl1	2.78			La1 – Cl2	2.94		
Cl2 - Cl1	4.24			Cl2 - Cl1	4.24		

	Gd ₂ O	Cl ₂ H ₂ , R3m			
Bond	Value	Angle	Value		
Gd1 – Gd2	3.74				
Gd1 – O1	2.30	Gd1 - O1 - Gd2	106.7		
Gd2 – O1	2.36				
Gd1 – H2	2.16	Gd2 - H1 - H2	174.6		
Gd2 – H1	2.23				
H1 – H2	2.27				
H2 – Cl1	2.66	Gd1 – H2 – Cl1	180.0		
Gd1 – Cl2	2.82	Gd1 - Cl2 - Cl1	159.5		
Gd2 – Cl2	5.47				
Gd1 – Cl2	2.82				
Cl2 – Cl1	4.28				

Supplementary Table S26: Bond distances (in Å) and bond angles (in degrees) in Gd₂OCl₂H₂

3. Elastic properties of $Ln_2OF_{2-x}Cl_xH_2$ (Ln = Y, La, Gd)

Supplementary table S27: Components of the elasticity tensors C_{ij} (in GPa)

	Y ₂ OF ₂ H ₂ (P3m1)							Y ₂ OF ₂ H	I ₂ (R3m))	
170.1	64.1	51.0	8.0	0	0	194.5	68.3	26.1	-12.1	0	0
64.1	170.1	51.0	-8.0	0	0	68.3	194.5	26.1	12.1	0	0
51.0	51.0	136.3	0	0	0	26.1	26.1	23.2	0	0	0
8.0	-8.0	0	25.6	0	0	-12.1	12.1	0	31.6	0	0
0	0	0	0	25.6	8.0	0	0	0	0	31.6	-12.1
0	0	0	0	8.0	53.0	0	0	0	0	-12.1	63.1
	Ι	La ₂ OF ₂ H	2 (P3m1	l)			Ι	La ₂ OF ₂ F	H ₂ (R3m)	
145.3	48.6	30.9	0.4	0	0	173.5	68.7	40.9	-17.7	0	0
48.6	145.3	30.9	-0.4	0	0	68.7	173.5	40.9	17.7	0	0
30.9	30.9	117.6	0	0	0	40.9	40.9	70.0	0	0	0
0.4	-0.4	0	20.3	0	0	-17.7	17.7	0	35.8	0	0
0	0	0	0	20.3	0.4	0	0	0	0	35.8	-17.7
0	0	0	0	0.4	48.3	0	0	0	0	-17.7	52.4
	C	Gd ₂ OF ₂ H	l2 (P3m)	1)			(Gd ₂ OF ₂ I	H ₂ (R3m	l)	
164.8	59.3	45.0	4.2	0	0	192.4	69.5	32.4	-15.0	0	0
59.3	164.8	45.0	-4.2	0	0	69.5	192.4	32.4	15.0	0	0
45.0	45.0	132.7	0	0	0	32.4	32.4	31.2	0	0	0
4.2	-4.2	0	25.5	0	0	-15.0	15.0	0	37.9	0	0
0	0	0	0	25.5	4.2	0	0	0	0	37.9	-15.0
0	0	0	0	4.2	52.7	0	0	0	0	-15.0	61.5

Y_2OFClH_2 (P3m1)							λ	20FCII	H ₂ (R3m)	
167.2	45.4	31.3	-5.2	0	0	158.9	43.2	11.2	-2.2	0	0
45.4	167.2	31.3	5.2	0	0	43.2	158.9	11.2	2.2	0	0
31.3	31.3	41.2	0	0	0	11.2	11.2	19.6	0	0	0
-5.2	5.2	0	24.4	0	0	-2.2	2.2	0	5.9	0	0
0	0	0	0	24.4	-5.2	0	0	0	0	5.9	-2.2
0	0	0	0	-5.2	60.9	0	0	0	0	-2.2	57.9
	La	a2OFCII	H ₂ (P3m	1)			L	a2OFC1	H ₂ (R3n	n)	
143.6	40.7	28.2	-4.0	0	0	139.4	44.5	21.7	-6.9	0	0
40.7	143.6	28.2	4.0	0	0	44.5	139.4	21.7	6.9	0	0

28.2	28.2	78.9	0	0	0	21.7	21.7	27.3	0	0	0
-4.0	4.0	0	18.8	0	0	-6.9	6.9	0	14.4	0	0
0	0	0	0	18.8	-4.0	0	0	0	0	14.4	-6.9
0	0	0	0	-4.0	47.0	0	0	0	0	-6.9	47.4
	G	d ₂ OFCll	H ₂ (P3m	1)			G	d ₂ OFCl	H ₂ (R3n	n)	
158.7	44.4	33.0	-4.9	0	0	151.5	41.2	12.0	-2.5	0	0
44.4	158.7	33.0	4.9	0	0	41.2	151.5	12.0	2.5	0	0
33.0	33.0	52.8	0	0	0	12.0	12.0	18.6	0	0	0
-4.9	4.9	0	24.7	0	0	-2.5	2.5	0	6.1	0	0
0	0	0	0	24.7	-4.9	0	0	0	0	6.1	-2.5
0	0	0	0	-4.9	57.1	0	0	0	0	-2.5	55.1
	La	GdOFC	lH ₂ (P3n	n1)			La	GdOFC	$1H_2$ (R3)	m)	
140.0	42.2	28.4	-2.5	0	0	143.6	42.7	20.4	-6.4	0	0
42.2	140.0	28.4	2.5	0	0	42.7	143.6	20.4	6.4	0	0
28.4	28.4	71.1	0	0	0	20.4	20.4	25.1	0	0	0
-2.5	2.5	0	20.0	0	0	-6.4	6.4	0	12.9	0	0
0	0	0	0	20.0	-2.5	0	0	0	0	12.9	-6.4
0	0	0	0	-2.5	48.9	0	0	0	0	-6.4	50.5
	, second s	Y ₂ OCl ₂ H	H2 (R3m)			L	.a2OCl2I	H ₂ (R3m	ı)	
124.4	34.1	2.6	-0.2	0	0	98.8	30.0	2.9	-0.4	0	0
34.1	124.4	2.6	0.2	0	0	30.0	98.8	2.9	0.4	0	0
2.6	2.6	8.8	0	0	0	2.9	2.9	7.7	0	0	0
-0.2	0.2	0	1.5	0	0	-0.4	0.4	0	1.4	0	0
0	0	0	0	1.5	-0.2	0	0	0	0	1.4	-0.4
0	0	0	0	-0.2	45.1	0	0	0	0	-0.4	34.4
	G	d_2OCl_2	H_2 (R3n	1)							
116.7	32.3	2.3	-0.2	0	0						
32.3	116.7	2.3	0.2	0	0						
2.3	2.3	7.7	0	0	0						
-0.2	0.2	0	1.0	0	0						
0	0	0	0	1.0	-0.2						
0	0	0	0	-0.2	42.2						

Supplementary table S28: Eigenvalues (λ) of the elasticity tensor (in Gpa)

	λ_1	λ_2	λ3	λ4	λ5	λ_6
Y ₂ OF ₂ H ₂ (P3m1)	23.4	24.0	55.1	98.1	107.5	272.4
$Y_2OF_2H_2$ (R3m)	17.7	27.4	28.6	67.3	129.3	268.3
$La_2OF_2H_2$ (P3m1)	20.3	20.3	48.3	96.7	97.7	213.8
$La_2OF_2H_2$ (R3m)	24.5	27.6	52.4	63.6	112.9	259.8
$Gd_2OF_2H_2$ (P3m1)	24.9	25.1	53.4	100.1	105.9	256.7
Gd ₂ OF ₂ H ₂ (R3m)	22.5	30.6	32.9	68.7	127.9	270.7
Y ₂ OFClH ₂ (P3m1)	23.7	23.8	30.5	61.6	122.4	223.4
Y ₂ OFClH ₂ (R3m)	5.8	5.8	18.2	58.0	115.9	203.4
La ₂ OFClH ₂ (P3m1)	18.3	18.4	47.5	64.6	94.3	189.7
La ₂ OFClH ₂ (R3m)	13.0	13.2	21.5	48.8	96.1	189.7
Gd ₂ OFClH ₂ (P3m1)	24.0	24.2	39.5	57.9	114.8	216.4
Gd ₂ OFClH ₂ (R3m)	6.0	6.0	17.0	55.3	110.4	194.3
LaGdOFClH ₂ (P3m1)	19.8	19.9	49.1	58.1	97.9	195.1
LaGdOFClH ₂ (R3m)	11.8	12.0	20.0	51.1	101.9	191.3
$Y_2OCl_2H_2$ (R3m)	1.5	1.5	8.8	45.1	90.3	158.5
$La_2OCl_2H_2$ (R3m)	1.4	1.4	7.6	34.4	68.8	128.9
Gd ₂ OCl ₂ H ₂ (R3m)	1.0	1.0	7.6	42.2	84.3	149.0

Spatial distributions of the shear modulus and Poisson's ratio were analyzed and visualized by using program tools implemented in ELATE open-source online application [1,2].

Supplementary Figure S1: Spatial distribution of the A) linear compressibility (in TPa⁻¹) and B) Poisson's ratio in Y₂OF₂H₂ (R3m). Green and blue colors represent the minimal and maximal values, respectively. Red color denotes the negative values

Supplementary Figure S2: Spatial distribution of the A) linear compressibility (in TPa⁻¹) and B) Poisson's ratio in Gd₂OF₂H₂ (R3m). Green and blue colors represent the minimal and maximal values, respectively. Red color denotes the negative values

4. Zone-centered optical vibrational modes calculated in the harmonic approximation

The frequencies were classified by using the program tools described in Ref. [3]

Frequency	Mode symmetry	Vibrational displacements					
1317 cm ⁻¹	A ₁	H2 – H1					
1311 cm ⁻¹	Е	H2 – H2					
843 cm ⁻¹	Е	H1 – H2 – O1					
673 cm ⁻¹	A ₁	H1 – Y2					
495 cm ⁻¹	A ₁	O1 - F1 - Y1					
408 cm ⁻¹	Е	F1 - O1 - Y1					
347 cm ⁻¹	A ₁	F1 - F2 - Y1 - Y2					
286 cm ⁻¹	Е	F2 - O1 - Y1					
207 cm ⁻¹	A ₁	F1 - F2 - Y2					
194 cm ⁻¹	A ₁	Y1 - Y2 - F2					
168 cm ⁻¹	Е	F1 - Y1 - Y2					
106 cm ⁻¹	Е	Y1 – Y2					

Supplementary Table S29: $Y_2OF_2H_2$ (P3m1). $\Gamma_{optic} = 6A_1 + 6E$

Supplementary Table S30: $Y_2OF_2H_2$ (R3m). $\Gamma_{optic} = 6A_1 + 6E$

Frequency	Mode symmetry	Vibrational displacements
1434 cm^{-1}	A ₁	H2 – H1
1352 cm ⁻¹	E	H1 – H2
850 cm ⁻¹	Е	H2 - H1 - O1
693 cm ⁻¹	A1	H1 – Y2
465 cm ⁻¹	A_1	O1 - Y1 - F1
425 cm ⁻¹	E	O1 – F1 – Y2
359 cm ⁻¹	A_1	F1 - Y1 - Y2
251 cm ⁻¹	Е	F1 - F2 - Y1
238 cm ⁻¹	A_1	F2 - F1 - Y2
164 cm^{-1}	Е	F1 – Y2
161 cm ⁻¹	A ₁	F2 - F1 - Y1 - Y2
102 cm^{-1}	E	Y1 – Y2 – F1

Supplementary Table S31: La₂OF₂H₂ (P3m1). $\Gamma_{optic} = 6A_1 + 6E$

Frequency	Mode symmetry	Vibrational displacements
1243 cm ⁻¹	A1	H2 – H1
1155 cm ⁻¹	Е	H1 – H2
723 cm ⁻¹	E	H2 – H1
583 cm ⁻¹	A1	H1 – La2
429 cm ⁻¹	A1	O1 – La2
338 cm ⁻¹	E	O1 – F1
283 cm ⁻¹	A1	O1 – F1 – La1
242 cm ⁻¹	E	F2 – O1 – La1
203 cm ⁻¹	A1	F2 - F1 - La1 - La2
151 cm ⁻¹	A1	La1 - La2 - F1
145 cm ⁻¹	E	F1 – La2
82 cm ⁻¹	E	La1 - La2 - F2

Frequency	Mode symmetry	Vibrational displacements
1319 cm ⁻¹	A ₁	H2 – H1
1183 cm ⁻¹	Е	H1 – H2
721 cm ⁻¹	Е	H2 – H1 – O1
558 cm ⁻¹	A_1	H1 – La2
406 cm ⁻¹	A_1	O1 – La1 – F1
333 cm ⁻¹	Е	O1 – F2
291 cm ⁻¹	A ₁	F1 - F2 - La1 - La2
248 cm ⁻¹	Е	F2 – O1 – La1
178 cm ⁻¹	A_1	F1 - F2 - La1
153 cm ⁻¹	Е	F1 – La2
133 cm ⁻¹	A ₁	La1 – La2 – F1
82 cm ⁻¹	Е	La1 – La2 – F1

Supplementary Table S32: La₂OF₂H₂ (R3m). $\Gamma_{optic} = 6A_1 + 6E$

Supplementary Table S33: $Gd_2OF_2H_2$ (P3m1). $\Gamma_{optic} = 6A_1 + 6E$

Frequency	Mode symmetry	Vibrational displacements
1303 cm ⁻¹	A ₁	H2 - H1
1269 cm ⁻¹	Е	H1 – H2
788 cm ⁻¹	Е	H2 - H1
652 cm ⁻¹	A ₁	H1 – Gd2
477 cm ⁻¹	A ₁	O1 - F1 - Gd1
389 cm ⁻¹	Е	O1 – F2
320 cm ⁻¹	A ₁	F1 - F2 - Gd1 - Gd2
269 cm ⁻¹	Е	F2 - O1 - Gd1
200 cm ⁻¹	A ₁	F2 - F1 - Gd2
159 cm ⁻¹	Е	F1 - Gd1
153 cm ⁻¹	A_1	F2 - Gd1 - Gd2
81 cm ⁻¹	E	Gd1 - Gd2 - F2

Supplementary Table S34: $Gd_2OF_2H_2$ (R3m). $\Gamma_{optic} = 6A_1 + 6E$

Frequency	Mode symmetry	Vibrational displacements
1418 cm ⁻¹	A ₁	H2 – H1
1298 cm ⁻¹	Е	H1 – H2
799 cm ⁻¹	Е	H2 – H1 – O1
661 cm ⁻¹	A ₁	H1 – Gd2
448 cm ⁻¹	A ₁	O1 – Gd1 – F2
395 cm ⁻¹	E	O1 – F1
333 cm ⁻¹	A ₁	F1 - F2 - Gd1 - Gd2
249 cm ⁻¹	E	F2 - O1 - Gd1
206 cm ⁻¹	A ₁	F1 - F2 - Gd2
163 cm ⁻¹	Е	F1 – Gd2
128 cm ⁻¹	A ₁	Gd1 – Gd2 – F1
80 cm ⁻¹	Е	Gd1 – Gd2

Mode symmetry	Vibrational displacements
Е	H1 – H2
A ₁	H2 – H1
E	H1 - H2 - O1
A ₁	H1 – Y2
A ₁	F1 – O1 – Y1
E	O1 – F1 – Y1
A ₁	F1 - Cl1 - Y1 - Y2
Е	F1 – O1 – Y1
A1	F1 – Cl1 – Y2
A ₁	Cl1 – Y1 – Y2
E	Cl1 – Y2
E	Y1 – Y2 – Cl1
	Mode symmetryE A_1 E A_1 A_1 E A_1 E A_1 E A_1 E A_1 E A_1 EE A_1 EEEEEEE

Supplementary Table S35: Y_2OFClH_2 (P3m1). $\Gamma_{optic} = 6A_1 + 6E$

Supplementary Table S36: Y_2OFClH_2 (R3m). $\Gamma_{optic} = 6A_1 + 6E$

Frequency	Mode symmetry	Vibrational displacements
1285 cm ⁻¹	Е	H1 – H2
1274 cm ⁻¹	A1	H2 – H1
856 cm ⁻¹	Е	H2 - H1 - O1
686 cm ⁻¹	A_1	H1 – Y2
479 cm ⁻¹	A_1	O1 - Y1 - F1
411 cm ⁻¹	Е	O1 - F1 - Y1
314 cm ⁻¹	A_1	F1 - C11 - Y1 - Y2
240 cm ⁻¹	A1	Cl1 - F1 - Y2
231 cm ⁻¹	Е	F1 - Y2 - O1
154 cm ⁻¹	A1	Cl1 - F1 - Y1 - Y2
154 cm ⁻¹	E	Cl1 – Y2
90 cm ⁻¹	Е	Y1 - Y2 - Cl1

Supplementary Table S37: La₂OFClH₂ (P3m1). $\Gamma_{optic} = 6A_1 + 6E$

Frequency	Mode symmetry	Vibrational displacements
1121 cm ⁻¹	Е	H1 – H2
1119 cm ⁻¹	A ₁	H2 – H1
762 cm ⁻¹	E	H2 – H1
562 cm ⁻¹	A ₁	H1 – La2
438 cm ⁻¹	A1	O1 – F1 – La1
332 cm ⁻¹	E	O1 – F1
256 cm ⁻¹	A1	F1 - Cl1 - La1 - La2
222 cm ⁻¹	E	F1 – O1 – La1
180 cm ⁻¹	A1	Cl1 – F1 – La2
140 cm ⁻¹	A1	La1 – La2 – Cl1
128 cm ⁻¹	E	Cl1 – La2
75 cm ⁻¹	Е	La1 – La2 – Cl1

Frequency	Mode symmetry	Vibrational displacements
1144 cm ⁻¹	A ₁	H2 – H1
1127 cm ⁻¹	Е	H1 – H2
768 cm ⁻¹	Е	H2 – H1 – O1
565 cm ⁻¹	A ₁	H1 – La2
435 cm ⁻¹	A ₁	O1 – La1 – F1
333 cm ⁻¹	E	O1 – F1
258 cm ⁻¹	A1	F1 – C11 – La1 – La2
225 cm ⁻¹	E	F1 – O1 – La1
176 cm ⁻¹	A1	F1 – Cl1 – La2
130 cm ⁻¹	A ₁	La1 - La2 - Cl1
128 cm ⁻¹	Е	Cl1 – La2
73 cm ⁻¹	E	La1 – La2 – Cl1 – F1

Supplementary Table S38: La_2OFClH_2 (R3m). $\Gamma_{optic} = 6A_1 + 6E$

Supplementary Table S39: Gd₂OFClH₂ (P3m1). $\Gamma_{optic} = 6A_1 + 6E$

Frequency	Mode symmetry	Vibrational displacements
1228 cm ⁻¹	Е	H1 – H2
1208 cm ⁻¹	A ₁	H2 – H1
789 cm ⁻¹	E	H2 – H1
656 cm ⁻¹	A_1	H1 – Gd2
474 cm ⁻¹	A_1	O1 - F1 - Gd1
382 cm ⁻¹	Е	O1 – F1
289 cm ⁻¹	A_1	F1 - C11 - Gd1 - Gd2
235 cm ⁻¹	Е	F1 - O1 - Gd1
195 cm ⁻¹	A_1	Cl1 - F1 - Gd2
139 cm ⁻¹	Е	Cl1 – Gd2
131 cm ⁻¹	A ₁	Cl1 - Gd1 - Gd2
77 cm ⁻¹	Е	Gd1 - Gd2 - Cl1 - F1

Supplementary Table S40: Gd_2OFClH_2 (R3m). $\Gamma_{optic} = 6A_1 + 6E$

Frequency	Mode symmetry	Vibrational displacements
1254 cm ⁻¹	A ₁	H2 – H1
1242 cm ⁻¹	Е	H1 – H2
808 cm ⁻¹	Е	H2 – H1 – O1
661 cm ⁻¹	A_1	H1 – Gd2
464 cm ⁻¹	A ₁	O1 – Gd1 – F1
389 cm ⁻¹	Е	O1 – F1
286 cm ⁻¹	A ₁	F1 - C11 - Gd1 - Gd2
221 cm ⁻¹	Е	F1 – O1 – Gd1
215 cm ⁻¹	A ₁	Cl1 – F1 – Gd2
138 cm ⁻¹	Е	Cl1 – Gd2
126 cm ⁻¹	A ₁	Gd1 – Gd2 – Cl1 – F1
72 cm ⁻¹	Е	Gd1 – Gd2 – Cl1 – F1

	(
Frequency	Mode symmetry	Vibrational displacements
1171 cm ⁻¹	A_1	H2 – H1
1111 cm ⁻¹	Е	H1 – H2
656 cm ⁻¹	A_1	H1 – La1
644 cm ⁻¹	Е	H2 – H1
468 cm ⁻¹	A_1	O1 – F1 – Gd1
350 cm ⁻¹	Е	O1 – F1
275 cm ⁻¹	A ₁	F1 - C11 - La1 - Gd1
253 cm ⁻¹	Е	F1 – O1 – La1
184 cm ⁻¹	A_1	Cl1 – F1 – Gd1
139 cm ⁻¹	A_1	Cl1 – La1 – Gd1
121 cm ⁻¹	Е	Cl1 – Gd1
75 cm ⁻¹	E	Gd1 – La1 – Cl1 – F1

Supplementary Table S41: LaGdOFClH₂ (P3m1). $\Gamma_{optic} = 6A_1 + 6E$

Supplementary Table S42: LaGdOFClH₂ (R3m). $\Gamma_{optic} = 6A_1 + 6E$

Frequency	Mode symmetry	Vibrational displacements
1199 cm ⁻¹	A ₁	H2 – H1
1117 cm ⁻¹	Е	H1 – H2
661 cm ⁻¹	Е	H2 - H1 - O1
660 cm ⁻¹	A ₁	H1 – Gd1
462 cm ⁻¹	A ₁	O1 – La1 – F1
352 cm ⁻¹	Е	O1 – F1
275 cm ⁻¹	A ₁	F1 – Cl1 – La1 – Gd1
249 cm ⁻¹	Е	F1 – O1 – La1
188 cm ⁻¹	A ₁	Cl1 – F1 – Gd1
134 cm^{-1}	A ₁	Gd1 – La1 – Cl1 – F1
119 cm ⁻¹	Е	Cl1 – Gd1
72 cm^{-1}	Е	La1 - Gd1 - Cl1 - F1

Supplementary Table S43: $Y_2OCl_2H_2$ (R3m). $\Gamma_{optic} = 6A_1 + 6E$

Frequency	Mode symmetry	Vibrational displacements
1325 cm ⁻¹	A_1	H2 – H1
1226 cm ⁻¹	Е	H1 – H2
787 cm ⁻¹	Е	H2 - H1 - O1
688 cm ⁻¹	A1	H1 – Y2
456 cm ⁻¹	A1	O1 – Y1
383 cm ⁻¹	Е	O1 – Y1
280 cm ⁻¹	A ₁	Cl1 - Cl2 - Y1 - Y2
250 cm ⁻¹	A ₁	Cl1 - Cl2 - Y2 - Y1
166 cm ⁻¹	Е	Cl2 - Y2 - O1
154 cm ⁻¹	Е	Cl1 – Y2
140 cm ⁻¹	A ₁	Cl2 - Cl1 - Y2 - Y1
84 cm ⁻¹	Е	Y1 – Y2 – Cl1

apprendentally rubic strict		
Frequency	Mode symmetry	Vibrational displacements
1228 cm ⁻¹	A1	H2 – H1
1073 cm ⁻¹	Е	H1 – H2
684 cm ⁻¹	Е	H2 – H1 – O1
584 cm ⁻¹	A ₁	H1 – La2
395 cm ⁻¹	A ₁	O1 – La1
305 cm ⁻¹	Е	O1 – Cl2
232 cm ⁻¹	A1	Cl1 – Cl2 – La1 – La2
211 cm ⁻¹	A_1	Cl2 – Cl1 – La2
149 cm ⁻¹	Е	Cl2 – O1 – La1
134 cm ⁻¹	Е	C11 – La2
113 cm ⁻¹	A1	La1 – La2 – Cl1
66 cm ⁻¹	Е	La1 – La2 – Cl1 – Cl2

Supplementary Table S44: La₂OCl₂H₂ (R3m). $\Gamma_{optic} = 6A_1 + 6E$

Supplementary Table S45: $Gd_2OCl_2H_2$ (R3m). $\Gamma_{optic} = 6A_1 + 6E$

Frequency	Mode symmetry	Vibrational displacements
1304 cm ⁻¹	A1	H2 – H1
1189 cm ⁻¹	Е	H1 – H2
738 cm ⁻¹	Е	H2 – H1 – O1
661 cm ⁻¹	A ₁	H1 – Gd2
436 cm ⁻¹	A ₁	O1 – Gd1
361 cm ⁻¹	Е	O1 – Gd2
249 cm ⁻¹	A ₁	Cl1 - Cl2 - Gd1 - Gd2
230 cm ⁻¹	A1	Cl1 – Cl2 – Gd2
152 cm ⁻¹	Е	Cl2 – Gd1
140 cm ⁻¹	Е	Cl1 – Gd2
116 cm ⁻¹	A ₁	Gd1 - Gd2 - Cl1 - Cl2
68 cm ⁻¹	Е	Gd1 - Gd2 - Cl1 - Cl2

5. Simulation of X-ray diffraction patterns

The Cu K α monochromatic beam with wavelength λ =1.5406 Å was set as a parameter of calculation to determine the theoretical X-ray diffraction patterns. The illustrations have been made by using the VESTA program [4].

Supplementary Figure S5: La₂OF₂H₂ (P3m1)

Supplementary Figure S7: Gd₂OF₂H₂ (P3m1)

Supplementary Figure S8: Gd₂OF₂H₂ (R3m)

Supplementary Figure S9: Y2OFClH2 (P3m1)

Supplementary Figure S11: La₂OFClH₂ (P3m1)

Supplementary Figure S10: Y2OFClH2 (R3m)

Supplementary Figure S12: La₂OFClH₂ (R3m)

Supplementary Figure S13: Gd₂OFClH₂ (P3m1)

Supplementary Figure S15: LaGdOFClH₂ (P3m1)

Supplementary Figure S14: Gd₂OFClH₂ (R3m)

Supplementary Figure S16: LaGdOFClH₂ (R3m)

Supplementary Figure S17: Y₂OCl₂H₂ (R3m)

Supplementary Figure S18: La₂OCl₂H₂ (R3m)

Supplementary Figure S19: Gd₂OCl₂H₂ (R3m)

6. Radial distribution function evaluated for the shortest interatomic distances

Calculations have been performed for four temperatures: T=12 K (results are shown in black), 100 K (shown in red), 200 K (shown in green).

Supplementary Figure S20: Radial distribution functions for the shortest interatomic distances between atoms in Y₂OF₂H₂ (R3m)

7. Piezoelectric properties of Ln₂OF_{2-x}Cl_xH₂ (Ln = Y, La, Gd)

meet prezerie tensor (eij) und diefeetite tensor (eij) in Enzer 2112										
		e15	e22	e31	e33	ε11	ε33			
Y ₂ OF ₂ H ₂	Elect.	-0.03	-0.03	0.08	-0.28	4.67	3.38			
(P3m1)	Ion.	0.92	0.89	1.15	-0.06	13.21	10.09			
Y ₂ OF ₂ H ₂	Elect.	-0.04	0.10	0.002	0.04	4.47	3.13			
(R3m)	Ion.	-0.06	-0.82	0.22	-0.08	11.86	5.04			
La ₂ OF ₂ H ₂	Elect.	-0.01	0.03	0.11	-0.34	4.48	3.44			
(P3m1)	Ion.	0.60	-0.41	1.02	0.44	12.86	8.71			
La ₂ OF ₂ H ₂	Elect.	-0.02	0.07	-0.02	0.08	4.56	3.61			
(R3m)	Ion.	-0.09	-0.08	0.38	-0.62	13.91	10.96			

Supplementary Table S46: Independent components of electronic and ionic contributions to direct piezoelectric tensor (eij) and dielectric tensor (ϵ ij) in Ln₂OF₂H₂

Supplementary Table S47: Independent components of electronic and ionic contributions to direct piezoelectric tensor (eij) and dielectric tensor (ϵ ij) in Ln₂OFClH₂

		e15	e22	e31	e33	ε 11	ε33
Y ₂ OFClH ₂	Elect.	0.01	0.002	0.07	-0.34	4.74	3.68
(P3m1)	Ion.	-0.03	0.25	0.23	-1.06	9.35	5.05
Y ₂ OFClH ₂	Elect.	-0.01	0.03	0.02	-0.22	4.46	3.78
(R3m)	Ion.	-0.14	-0.36	0.09	-0.43	9.26	2.44
La ₂ OFClH ₂	Elect.	0.04	0.01	0.10	-0.35	4.50	3.75
(P3m1)	Ion.	-0.05	-0.05	0.37	-0.54	10.13	5.74
La ₂ OFClH ₂	Elect.	0.01	0.04	0.02	-0.21	4.55	3.65
(R3m)	Ion.	-0.23	0.14	0.26	-0.89	10.69	5.39
Gd ₂ OFClH ₂	Elect.	0.02	-0.01	0.08	-0.37	4.70	3.80
(P3m1)	Ion.	-0.03	0.16	0.30	-0.99	10.10	5.49
Gd ₂ OFClH ₂	Elect.	0.01	0.05	0.01	-0.20	4.62	3.34
(R3m)	Ion.	-0.17	-0.24	0.12	-0.48	9.02	2.69
LaGdOFClH ₂	Elect.	0.06	0.003	0.05	-0.36	4.67	3.80
(P3m1)	Ion.	-0.05	0.20	0.36	-0.75	12.71	5.65
LaGdOFClH ₂	Elect.	0.04	0.04	-0.02	-0.22	4.62	3.95
(R3m)	Ion.	-0.22	-0.18	0.23	-0.82	12.51	4.31

Supplementary Table S48: Independent components of electronic and ionic contributions to direct piezoelectric tensor (eij) and dielectric tensor (ϵ ij) in Ln₂OCl₂H₂

1							
		e15	e22	e31	e33	<i>ε</i> 11	ε33
Y ₂ OCl ₂ H ₂	Elect.	-0.02	0.004	0.02	-0.06	4.40	3.69
(R3m)	Ion.	-0.01	-0.27	0.02	-0.04	8.05	0.96
La ₂ OCl ₂ H ₂	Elect.	0.01	0.01	0.03	-0.04	4.25	3.40
(R3m)	Ion.	-0.06	-0.10	0.06	-0.03	8.39	1.14
Gd ₂ OCl ₂ H ₂	Elect.	-0.002	0.02	0.03	-0.04	4.42	3.65
(R3m)	Ion.	-0.02	-0.22	0.02	-0.04	7.89	0.95

Supplementary Table S49: Comparison of the electromechanical properties of $Ln_2OF_{2-x}Cl_xH_2$ expressed in terms of piezoelectric voltage constant g_{ij} (10⁻³ ×[Vm/N]), piezoelectric coupling factors k_{ij} and k_t , and piezoelectric transduction coefficients d_{ij} · g_{ij} (10⁻¹⁵ ×[m²/N])

Chem.	Struc-	1	1	1	1		1			1	1
Formula	ture	g ₃₃	K ₃₃	Kt	d ₃₃ ·g ₃₃	g ₃₁	K ₃₁	$a_{31} \cdot g_{31}$	g ₁₅	K ₁₅	$a_{15} \cdot g_{15}$
Y ₂ OF ₂ H ₂	P3m1	-64.8	23.9%	8.4%	500	58.3	23.2%	405	271	53.1%	11576
	R3m	-64.2	7.3%	3.1%	298	18.0	5.9%	23	9.3	1.9%	12
	P3m1	-22.7	7.7%	2.8%	55	57.8	21.2%	360	210.7	37.2%	6811
$La_2OF_2\Pi_2$	R3m	-91.3	24.6%	17.6%	1074	27.1	10.7%	95	-22.1	4.9%	80
Y ₂ OFClH ₂	P3m1	-600.0	94.4%	61.7%	27841	106.8	35.0%	882	-14.8	2.6%	27
	R3m	-723.3	69.3%	55.5%	26205	45.7	12.2%	105	-177	14.6%	3663
LacOECIU	P3m1	-179.8	43.6%	33.3%	2719	60.4	18.8%	307	-0.9	0.1%	0.1
	R3m	-637.7	86.0%	58.9%	33367	93.6	28.2%	719	-143.6	19.4%	2809
Gd ₂ OFClH ₂	P3m1	-427.5	79.5%	54.6%	15028	92.1	30.4%	697	-6.2	1.1%	5
	R3m	-770.9	73.7%	56.9%	31715	60.2	16.1%	193	-221.1	18.8%	5897
LaCdOECIU.	P3m1	-238.0	54.4%	41.4%	4749	64.0	20.3%	342	-0.2	0.1%	0.1
LaGuOFCIH ₂	R3m	-724.3	88.9%	60.9%	38354	94.4	27.6%	651	-91.0	12.3%	1256
Y ₂ OCl ₂ H ₂	R3m	-290.4	16.2%	15.7%	2999	10.4	2.1%	3.8	303.7	11.7%	9412
La ₂ OCl ₂ H ₂	R3m	-249.6	13.8%	12.8%	2504	22.9	4.3%	21	-273.7	10.9%	8386
Gd ₂ OCl ₂ H ₂	R3m	-260.6	14.5%	14.0%	2765	12.0	2.5%	6	-196.1	6.4%	4188

Supplementary Table S50: Comparison of the relaxed lattice geometry within the PBE+U approximation and the relevant experimental data for rare-earth oxides, fluorides, chlorides and hydrides

11			1					
	La2O3, P-3m1		LaH ₃ ,	Fm-3m	LaF3,	P-3c1	LaCl ₃ , P63/m	
	PBE+U	exp.[5]	PBE+U	exp.[6]	PBE+U	exp.[7]	PBE+U	exp.[8]
a, Å	3.96	3.96	5.59	5.62	7.15	7.19	7.45	7.48
b, Å	3.96	3.96	5.59	5.62	7.15	7.19	7.45	7.48
c, Å	6.21	6.14	5.59	5.62	7.33	7.35	4.33	4.37
V, Å ³	84.17	83.24	174.7	177.5	324.3	328.6	208.4	211.2
	Gd ₂ O ₃ , Ia-3		GdH ₃ , P-3c1		GdF ₃ , Pnma		GdCl ₃ , P63/m	
	PBE+U	exp.[9]	PBE+U	exp.[10]	PBE+U	exp.[11]	PBE+U	exp.[8]
a, Å	10.85	10.79	6.44	6.47	6.55	6.57	7.32	7.37
b, Å	10.85	10.79	6.44	6.47	7.05	6.98	7.32	7.37
c, Å	10.85	10.79	6.70	6.72	4.48	4.39	4.05	4.11
V, Å ³	1276.7	1256.2	241.0	243.2	207.6	201.3	188.3	193.0

References:

- 1. R. Gaillac, P. Pullumbi, F.X. Coudert. J. Phys.: Condens. Matter. 2016, 28, 27.
- 2. R. Gaillac, F.X. Coudert, <u>http://progs.coudert.name/elate</u>
- Kroumova, E.; Aroyo, M. I.; Perez-Mato, J. M.; Kirov, A.; Capillas, C.; Ivantchev, S.; Wondratschek, H. Bilbao Crystallographic Server I: Databases and crystallographic computing programs. *Phase Transitions* 2003, *76*, 155–170.
- 4. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J. Appl. Crystallogr.* **2011**, *44*, 1272-1276
- Cao Wang, Ming-qiu Tan, Chun-mu Feng, Zhi-feng Ma, Shuai Jiang, Zhu-an Xu, Guanghan Cao, Kazuyuki Matsubayashi, and Yoshiya Uwatoko. La₂Co₂Se₂O₃: A Quasi-Two-Dimensional Mott Insulator with Unusual Cobalt Spin State and Possible Orbital Ordering, *J. Am. Chem. Soc.*, **2010**, 132 (20), 7069-7073
- 6. H. Meng, M.A. Kuzovnikov, M. Tkacz, Phase stability of some rare earth trihydrides under high pressure, *Int. J. Hydrogen Energy*, **2017**, *42*, 29344-29349
- 7. Cheetham, A. K., Fender, B. E. F., Fuess, H. & Wright, A. F. A powder neutron diffraction study of lanthanum and cerium trifluorides, *Acta Cryst.*,**1976**, *B32*, 94-97
- 8. B. Morosin. Crystal Structures of Anhydrous Rare-Earth Chlorides, J. Chem. Phys., **1968**, 49, 3007-3012
- 9. Bartos, A., Lieb, K. P., Uhrmacher, M. & Wiarda, D. Refinement of atomic positions in bixbyite oxides using perturbed angular correlation spectroscopy, *Acta Cryst.* **1993**, *B49*, 165-169.
- 10. M. Ellner, H. Reule, E.J. Mittemeijer, The structure of the trihydride GdH₃, *J. Alloys Compd.*, **2000**, *309*, 1–2, 127-131
- 11. I.M. Ranieri, S.L. Baldochi, D. Klimm, The phase diagram GdF3-LuF3, J. Solid State Chem., 2008, 181, 5, 1070-1074