Electronic Supplementary Information (ESI):

On the formation of superoxide radicals on colloidal ATiO₃ (A = Sr and Ba) nanocrystal surfaces

Muhammad Abdullah,^a Ruby J. Nelson^a and Kevin R. Kittilstved*^a

^aDepartment of Chemistry, University of Massachusetts Amherst, 710 N Pleasant St, Amherst, MA, USA, 01003 *corresponding author: kittilstved@chem.umass.edu

Fig. S1. Powder X-ray diffraction patterns of SrTiO₃ NCs prepared from all three methods indexed to the cubic phase of bulk SrTiO₃ with Pm3m space group.¹

Table S1. The average lattice parameter and crystallite size calculated using Rigaku SmartLab Studio II for all three samples.

Preparation Method	Lattice parameter (Å)	Crystallite size (nm) ⁺
I (aerobic without hydrazine)	3.9069	7.3 ± 0.3
II (aerobic with hydrazine)	3.9162	7.5 ± 0.4
III (anaerobic without hydrazine)	3.9163	7.6 ± 0.7

[†]Crystallite size is the average size calculated from the three most intense reflections: (110), (200) and (211).

Fig. S2. Representative transmission electron microscopy (TEM) image of $SrTiO_3$ NCs prepared from method III (degassed with argon) showing a clear cubic morphology of NCs. The size distribution plot from analyzing over hundred different particles in raw TEM image using ImageJ software displays an average size of 7.3 \pm 1.2 nm in good agreement with crystallite size calculated from diffraction pattern in Figure S1. The cubic morphology of NCs prepared from the method I and method II is already confirmed in our previous report.²

Fig. S3. Room temperature electronic absorption spectra of BaTiO₃ NCs prepared from method-A (without hydrazine/orange) and method-B (with hydrazine/green). The color photographs of both samples are shown in inset.

Fig. S4. Powder X-ray diffraction pattern of BaTiO₃ NCs prepared from method-A (without hydrazine/orange) and method-B (with hydrazine/green) indexed to cubic phase of BaTiO₃.³

Table S2. The average lattice parameter and crystallite size calculated using Rigaku SmartLab Studio II for both samples.

Sample NCs	Lattice parameter (Å)	Crystallite size (nm) ⁺
With hydrazine	4.0230	5.66 ± 0.50
Without hydrazine	4.0335	6.54 ± 0.53

⁺Crystallite size is the average size calculated from the three most intense reflections: (110), (200) and (211).

Fig. S5. Powder X-ray diffraction pattern of BaTiO₃ NCs prepared from lactate-free method indexed to cubic phase of single crystal BaTiO₃.

Fig. S6. Room temperature electronic absorption spectrum of BaTiO₃ NCs prepared from lactate-free precursor. The color photograph of hexanes solution of as-prepared NCs is shown in inset.

References:

- 1. R. Mitchell, A. Chakhmouradian and P. Woodward, Crystal chemistry of perovskite-type compounds in the tausonite-loparite series, (Sr_{1-2x}Na_x La_x)TiO₃, *Phys. Chem. Miner.*, 2000, 27(8), 583.
- 2. W. L. Harrigan, S. E. Michaud, K. A. Lehuta and K. R. Kittilstved, Tunable electronic structure and surface defects in chromiumdoped colloidal SrTiO₃₋₆ nanocrystals, *Chem. Mater.*, 2016, 28(2), 430.
- 3. M. B. Smith, K. Page, T. Siegrist, P. L. Redmond, E. C. Walter, R. Seshadri, L. E. Brus and M. L. Steigerwald, Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO₃, *J. Am. Chem. Soc.*, 2008, 130(22), 6955.