Supplementary Information

High-purity reflective color filters based on thin film cavities embedded with an ultrathin Ge₂Sb₂Te₅ absorption layer

Junho Lee, Jaeyong Kim, and Myeongkyu Lee*

Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea

*Corresponding author: <u>myeong@yonsei.ac.kr</u> (M. Lee)

Figure S1. Reflectance maps for the (a) MIM and (b) MIGIM structures with a 10-nm-thick Ag top layer

Figure S2. (a) Reflectance spectrum obtained for the MIM structure of Au(10 nm)–SiO₂(420 nm)–Al(100 nm). The resonance peak observed at $\lambda = 490$ nm corresponds to m = 3. (b), (c) E-field intensity and absorbed power distributions at the resonance wavelength, respectively.

Figure S3. Refractive indices measured for Au films of different thicknesses. The index of bulk Au is from "D. R. Ride, CRC Handbook of Chemistry and Physics, 88th ed., CRC Press, 2007"

Figure S4. Reflectance spectra of MIGIM (measured) structure with a GST layer thickness of (a) 3.6 nm and (b) 14 nm.

Figure S5. Dependence of (a) reflectance spectra and (b) colors on the incident angle of light investigated with a red-color sample.