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Figure S1. Isolated Mi-Exo. Mi-Exo pellet after ultra-centrifugation. pFtM was treated with 

range from 0.5 to 5.0 % acetic acid (AA).
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Figure S2. Mi-Exo size properties. (A) Size distribution of Mi-Exo. (B) blockade baseline 

duration (ms) by particle tracking analysis. Blockade baseline duration means flow rate of Mi-

Exo particle. 
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Figure S3. Isolated bacterial OMV characterization. (A) Cryo-EM image of OMV. OMVs 

also have typical sphere vesicle formed bi-lipid layer structure. (B) Size distribution of OMVs. 

E. coli BL21 (DE3) strain was cultured to 500 mL in 2 L flask (200 rpm, 1 day, 25 ℃). Next, 

cultured bacteria sample was centrifuged 3,000 rpm, 30 min, 4 ℃, and supernatant filtered by 

using (0.45 and 0.22) μm bottle-top vacuum filter. Filtered supernatant was centrifuged at 

200,000× g for 2 h at 4 ℃, and washed with 10 mM DPBS under the same condition. OMV 

pellet was dispersed in 10 mM PBS buffer, and left overnight at 4 ℃. The final products were 

used in this study. 
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Figure S4. Stability test. Mi-Exo stored at three different temperatures of 4 ℃, 25 ℃, and 37 

℃. There were no significant differences between particle concentrations at 4 °C, after day 3. 

However, at 25 and 37 °C, there were a significant decrease in the NP Mi-Exo decreasing from 

14.3 – 64.3% at day 1 to 82.9 – 88.6% after day 3, respectively. NP: number of particles.
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Figure S5. Cell viability of LAW264.7 and IEC-18 cells. (A) Cell viability of RAW264.7 

cell. Although LPS treatment showed a tendency to decrease slightly, compared to the 

untreated group, this did not significantly affect the experiment. (B) Cell viability of the IEC-

18 cell. All results were measured in triplicate. For the cytotoxicity of Mi-Exo, RAW264.7 and 

IEC-18 cells were seeded into 96-well plate (3 × 105 cells/well), and incubated for 24 h. Then, 

Mi-Exo was added to plate, and further incubated for 24 h. The cells were then washed with 

DPBS. Cytotoxicity was measured by Cell Counting Kit-8 (Dojindo, Kumamoto, Japan), and 

the procedure was performed by manual protocol. Reading absorbance used ELISA plate 

reader. 
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Figure S6. TGFβ1 and TGFβ3 in Mi-Exo. The protein level of TGF-β1 and TGF-β3 in Mi-

Exo was analyzed by Western blot. The entire experimental procedure is described in 2.2.
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Table S1. MicroRNA primer list used in this study.

Primer Sequence (5’-3’) Reference

Adaptor primer GCGAGCACAGAATTAATACGACTCACTATA
GGTTTTTTTTTTTTTTTTT

1

Bta-miR-2478 GTATCCCACTTCTGACACCA miR Basea

Universal primer GCGAGCACAGAATTAATACGAC 1

aBta-miR sequence information can be found at the miR Base web site 

(http://www.mirbase.org/).
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Table S2. Cytokine primer list used in this study.

Species Primer Sequence (5’-3’) Reference
F CCACCACGCTCTTCTGTCTAC

TNFα
R AGGGTCTGGGCCATAGAACT

2

F GCTACCAAACTGGATATAATCAGGA
IL-6

R CCAGGTAGCTATGGTACTCCAGAA
3

F TCTTTGACGCTCGGAACTGT
iNOS

R CCATGATGGTCACATTCTGC
4

F AGCCCACCCCAAACACAGT
COX2

R AAATATGATCTGGATGTCAGCACATA
TT

5

F GTGGGCCGCTCTAGGCACCAA
Actin

R CTCTTTGATGTCACGCACGATTTC
6

F GTGTGGAGCAACATGTGGAACTCTA
TGFβ1 R TTGGTTCAGCCACTGCCGTA

7

F GCTCTTCCAGATACTTCGAC

Mouse

TGFβ3
R AGCAGTTCTCCTCCAGGTTG
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The Mi-Exo was pre-denatured at 95 ℃ for 3 min, followed by 45 cycles of denaturating at 95 

℃ for 15 s, annealing at 60 ℃ for 30 s, and extension at 72 ℃ for 30 s. Table S2 shows the 

primer list used for mRNA RT-PCR.
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