Supporting Information

A "concentration-induced self-assembly" strategy for Ag_xH_{3-x}PMo₁₂O₄₀ nanorods: synthesis, photoelectric properties and photocatalytic application

Xinxin Wang, Yuting Song, Fengyan Li*, Wenjuan Xu, Yue Zheng, Lin Xu*

Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.

* Corresponding author. Tel.: +86-431-85098760; Fax: +86-431-85099765.

E-mail address: linxu@nenu.edu.cn;

S1. TEM and HRTEM images

Fig. S1. TEM images of AgHPMo₁₂ nanorods (a), AgHPMo₁₂ nanorods/CuPc (e). HRTEM photographs of AgHPMo₁₂ nanorods (b,c) and AgHPMo₁₂ nanorods/CuPc (f). SAED pattern of the AgHPMo₁₂ nanorods (d).

S2. SEM image

Fig. S2. The cross-section diagram of the AgHPMo₁₂ nanorods/CuPc fabricated by silkscreen printing on ITO substrate. The membrane with a thickness about 8 μ m can be observed from the cross-section diagram.

(a) <u>bum</u> P <u>bum</u> Ag (c) <u>0 m</u> Mo <u>10 m</u> N

S3. EDX analysis

Fig. S3. The corresponding elemental mapping of the AgHPMo₁₂ nanorods/CuPc. Elements of P(a), Ag(b), Mo(c), N(d) in the sample.

Fig. S4. Photocatalytic degradation of tetracycline hydrochloride for AgHPMo₁₂ nanorods/CuPc under UV-vis light irradiation (200nm-800nm).

S5. Photo of the samples

Fig. S5. The actual images of three samples: (a) AgHPMo₁₂ particles; (b) AgHPMo₁₂ nanorods; (c) AgHPMo₁₂ nanorods/CuPc.

S6. XRD analysis

Fig. S6. XRD patterns of AgHPMo₁₂ particles and AgHPMo₁₂ nanorods.

S7. IR spectra

Fig. S7. IR spectra of pure CuPc, $AgHPMo_{12}$ nanorods and the $AgHPMo_{12}$ nanorods/CuPc.

S8. Conductivity measurements

The current-voltage (I-V) measurements were performed on a CHI660C Electrochemical Workstation (Shanghai Chenhua Instrument Corp, China). For I-V measurements, the dried pellet was sandwiched between two clean FTO substrates and the I-V curve of the pellet was collected with a two-electrode setup. The electrical conductivity (σ) of the material was then calculated by the following equation.

$$\sigma = \frac{l}{RA}$$

where R is the electrical resistance estimated from the slope of the I-V curve near zero voltage, 1 is the thickness of the pellet which is in the range of 0.1-0.3 mm, and A is the cross-section area of the pellet, which is 1.1304 cm². The average value of electrical conductivity for each material was calculated from two pellet measurements.

Fig. S8. Representative I-V curves of the $AgHPMo_{12}$ particles and $AgHPMo_{12}$ nanorods.

Table. S1. The thickness of the two pellets and the electrical conductivity (σ) of the AgHPMo₁₂ particles and AgHPMo₁₂ nanorods.

	1 (mm)	σ (S/m)
AgHPMo ₁₂ particles	0.315	8.87×10 ⁻⁶
AgHPMo ₁₂ NRs	0.352	5.10×10 ⁻⁵