Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Interfacial engineering with Carbon-Graphite- $Cu_{\delta}Ni_{1-\delta}O$ composites for ambient-air stable hole-conductor-free perovskite solar cells

Yousheng Wang*, Yuzhao Yang, Shaohang Wu, Cuiling Zhang, Zhen Wang, Jinlong Hu, Chong Liu, Fei Guo and Yaohua Mai*

Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou 510632, China

*E-mail address: wangys0120@jnu.edu.cn;

*E-mail address: <u>yaohuamai@jnu.edu.cn;</u>

Figure S1 (a) The surface morphology of Al_2O_3 and (b) as-synthesized $Cu_{0.02}Ni_{0.98}O$ thin film and (c) cross-sectional SEM image of FTO/SnO₂/Al₂O₃/Cu_{0.02}Ni_{0.98}O.

Figure S2 (a) Schematic of device configuration of $FTO/c-TiO_2/mp-TiO_2/Al_2O_3/Cu_{\delta}Ni_{1-\delta}O/C-G/MAPbI_{3-x}Cl_x/Au$ and (b) corresponding the band energy diagram; (c) *J-V* performance for different Cu doping contents of $Cu_{\delta}Ni_{1-\delta}O$ films; (d) continuous 1-sun illumination effect of carbon based HCF device of $Cu_{0.02}Ni_{0.98}O$.

Table	S 1	Photovoltaic	parameters	(Figure	S2c)	of	carbon	based	HCF-PSCs	$FTO/c-TtO_{2}$	₂ /mp-
TiO ₂ /A	l_2O_3	/Cu _o Ni _{1-o} O/C-	G/MAPbI _{3-x}	Cl _x /Au fo	or diffe	eren	t Cu dop	ing cor	tents of Cu_{δ}	Ni _{1-δ} O films.	

$\delta \left(C u_{\delta} N i_{1 \text{-} \delta} O \right)$	V_{oc} (V)	J_{sc} (mA/cm ²)	FF (%)	PCE (%)
0	0.82	20.25	41.66	6.92
0.01	0.86	20.28	49.28	8.60
0.02	0.88	20.97	55.30	10.21
0.03	0.84	19.55	52.35	8.60
0.04	0.83	19.13	44.21	7.02

Photo-stability (s)	V_{oc} (V)	J _{sc} (mA/cm ²)	FF (%)	PCE (%)
0	0.84	19.81	49.94	8.32
30	0.88	20.95	52.87	9.75
90	0.88	20.97	55.30	10.21
180	0.87	20.62	55.41	9.95
240	0.85	20.26	56.67	9.76
270	0.85	20.30	55.85	9.64

Table S2 Photovoltaic parameters (Figure S2d) for continuous 1-sun illumination effect of carbon based HCF device FTO/c-TiO₂/mp-TiO₂/Al₂O₃/Cu_{0.02}Ni_{0.98}O/C-G/MAPbI_{3-x}Cl_x/Au.

Figure S3 (a) Schematic of device configuration of $FTO/SnO_2/Al_2O_3/Cu_{0.02}Ni_{0.98}O/C-G/MAPbI_3$. _xCl_x/Au and (b) corresponding the band energy diagram; (c) corresponding *J-V* performance for different thicknesses of SnO₂ films; (d) continuous 1-sun illumination effect of Carbon and SnO₂ based HCF device for 4000 rpm of SnO₂.

Spin-coating speed of SnO ₂ precursor	V _{oc} (V)	J_{sc} (mA/cm ²)	FF (%)	PCE (%)
2000 rpm	0.84	20.01	47.64	8.01
3000 rpm	0.88	21.57	49.98	9.49
4000 rpm	0.91	23.01	52.12	10.92
5000 rpm	0.90	21.09	53.28	10.12

Table S4 Photovoltaic parameters (Figure S3d) for continuous 1-sun illumination effect of carbon and SnO_2 based HCF device of FTO/(4000 rpm) $SnO_2/Al_2O_3/Cu_{0.02}Ni_{0.98}O/C-G/MAPbI_{3-x}Cl_x/Au$.

Photo stability (s)	Voc (V)	Jsc (mA/cm ²)	FF (%)	PCE (%)
0	0.87	20.37	50.34	8.89
30	0.90	21.23	47.80	9.14
90	0.90	21.92	47.66	9.41
120	0.89	22.39	47.87	9.54
150	0.90	22.68	48.36	9.88
180	0.91	22.97	49.98	10.45
210	0.91	23.02	50.10	10.50
240	0.91	23.01	52.12	10.92
270	0.91	22.90	51.05	10.64
300	0.91	22.83	51.40	10.68
330	0.91	22.71	51.26	10.60

Figure S4 (a) *J-V* performance for different concentrations of $Cu_{0.02}Ni_{0.98}O$ NPs in C-G- $Cu_{0.02}Ni_{0.98}O$ composite films. (b) *J-V* performance for the continuous 1-sun illumination effect of C-G- $Cu_{0.02}Ni_{0.98}O$ composites and SnO₂ based HCF device of FTO/c-SnO₂/Al₂O₃/Cu_{0.02}Ni_{0.98}O/C-G- $Cu_{0.02}Ni_{0.98}O$ -MAPbI_{3-x}Cl_x/Au.

 $\label{eq:solution} \begin{array}{l} \textbf{Table S5} \ Photovoltaic \ parameters \ (Figure S4a) \ for \ different \ concentrations \ of \ Cu_{0.02}Ni_{0.98}O \ NPs \ in \ C-G-Cu_{0.02}Ni_{0.98}O \ composite \ based \ HCF-PSCs \ of \ FTO/SnO_2/Al_2O_3/Cu_{0.02}Ni_{0.98}O/C-G-Cu_{0.02}Ni_{0.98}O-MAPbI_{3-x}Cl_x/Au. \end{array}$

Contents of Cu _{0.02} Ni _{0.98} O	V_{oc} (V)	J_{sc} (mA/cm ²)	FF (%)	PCE (%)
w/o Cu _{0.02} Ni _{0.98} O	0.90	21.47	56.22	10.87
$0.05 \ wt\% \ Cu_{0.02} Ni_{0.98} O$	0.92	22.97	56.23	11.88
$0.1 wt\% Cu_{0.02}Ni_{0.98}O$	0.85	20.26	54.70	9.42
$0.2 wt\% Cu_{0.02}Ni_{0.98}O$	0.81	19.13	52.13	8.07

Table S6 Photovoltaic parameters (Figure S4b) for continuous 1-sun illumination effect of 0.05 wt% $Cu_{0.02}Ni_{0.98}O$ NPsinC-G-Cu_{\delta}Ni_{1-\delta}OcompositebasedHCFdeviceofFTO/SnO₂/Al₂O₃/Cu_{0.02}Ni_{0.98}O/C-G-Cu_{0.02}Ni_{0.98}O-MAPbI_{3-x}Cl_x/Au.HCFdeviceof

Photo stability (s)	V_{oc} (V)	J_{sc} (mA/cm ²)	FF (%)	PCE (%)
0	0.82	19.38	52.43	8.33
60	0.81	20.69	54.20	9.08
120	0.83	23.26	54.70	10.56
240	0.92	22.97	56.23	11.88
300	0.90	22.52	57.91	11.74
360	0.91	22.21	57.26	11.58

Figure S6 Thermal- and Air-stability for two devices of $FTO/SnO_2/MAPbI_{3-x}Cl_x/Spiro-/Au$ (black) and $FTO/SnO_2/Al_2O_3/Cu_\delta Ni_{1-\delta}O/C-G-Cu_\delta Ni_{1-\delta}O-MAPbI_{3-x}Cl_x/Au$ (blue) under 85 °C heat treatment and ambient air conditions (humidity 45-50%).

Figure S7 J-V (a) $FTO/SnO_2/MAPbI_{3-x}Cl_x/Spiro-OMeTAD/Au$, (b) $FTO/SnO_2/Al_2O_3/Cu_{0.02}Ni_{0.98}O/C-G-Cu_{0.02}Ni_{0.98}O-MAPbI_{3-x}Cl_x/Au$ and corresponding *J-V* performance for thermal-stability at 85 °C in ambient air (45-50 % humidity).

Thermal stability (h)	V_{oc} (V)	Jsc (mA/cm ²)	FF (%)	PCE (%)
0	1.03	23.20	75.41	18.02
2	1.02	20.51	75.90	15.88
12	0.99	19.71	72.79	14.21
24	0.92	17.68	70.09	11.54
72	0.91	17.06	58.63	9.11
120	0.88	15.36	57.01	7.71

Table S7 Photovoltaic parameters (Figure S6a) of $FTO/SnO_2/MAPbI_{3-x}Cl_x/Spiro-OMeTAD/Au$ forthermal-stability at 85 °C in ambient air (45-50 % humidity).

Table S8 Photovoltaic parameters (Figure S6b) of $FTO/SnO_2/Al_2O_3/Cu_{0.02}Ni_{0.98}O/C-G-Cu_{0.02}Ni_{0.98}O$ MAPbI_{3-x}Cl_x/Au for thermal-stability at 85 °C in ambient air (45-50 % humidity).

Thermal stability (h)	V _{oc} (V)	Jsc (mA/cm ²)	FF (%)	PCE (%)
0	0.91	21.97	56.23	11.24
2	0.90	21.17	58.68	11.18
12	0.91	20.98	57.27	10.94
24	0.90	20.89	55.94	10.52
72	0.89	20.51	55.77	10.18
120	0.89	20.34	55.72	10.09

Figure S8 UV performance and thermal-stability for two films (a) $FTO/SnO_2/MAPbI_{3-x}Cl_x/Spiro-OMeTAD$, (b) $FTO/SnO_2/Al_2O_3/Cu_{0.02}Ni_{0.98}O/C-G-Cu_{0.02}Ni_{0.98}O-MAPbI_{3-x}Cl_x$ at 85 °C heating in ambient air (humidity 45-50 %).

Figure S9 Schematic of device configurations $FTO/SnO_2/Al_2O_3/Cu_{0.02}Ni_{0.98}O/C-G-Cu_{0.02}Ni_{0.98}O-MAPbI_{3-x}Cl_x/Au$ and corresponding *J-V* performance for long-term stability in ambient air (45-50 % humidity).

Long-term stability	Voc (V)	J _{sc} (mA/cm ²)	FF (%)	PCE (%)
1 day	0.951	22.97	55.41	12.11
2 day	0.965	23.88	61.23	14.11
3 day	0.962	24.08	58.10	13.46
5 day	0.966	23.16	57.24	12.81
10 day	0.964	23.83	54.48	12.52
30 day	0.965	22.34	57.20	12.33
60 day	0.961	22.01	57.53	12.12
100 day	0.963	22.58	55.70	12.12
150 day	0.965	22.12	56.37	12.03
200 day	0.951	21.91	56.44	11.76
250 day	0.962	21.66	56.40	11.75
300 day	0.951	21.18	56.62	11.40

Table S9 Photovoltaic parameters (Figure S9) of $FTO/SnO_2/Al_2O_3/Cu_{0.02}Ni_{0.98}O/C-G-Cu_{0.02}Ni_{0.98}O-MAPbI_{3-x}Cl_x/Au$ for long-term stability in ambient air (45-50 % humidity).