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1 Nonlinear elasticity

1.1 Components of the Green-Lagrange strain tensor
The Electronic Supplementary Information (ESI) is based on the content of an earlier publication performed by the authors
in Ref. [1]. For the sake of simplicity, details found in Sec. 3.2 in [1] is reduced to a point in order to present exclusively
the whole non-linear Green-Lagrange (G-L) strain tensor and the final result with respect to the Exx tensor component. These
results are also found in Sec. 1.1 to help guide the reader for a deeper understanding of the theory proposed. Following the
same route presented in Sec 3.2 in [1] to identify the final bending moment in the form of a non-linear differential equation
and consequently, the physical second- and third elastic constants, the G-L tensor yields

E =
1
2

 (∂xu)2 + 2∂xu+(∂xw)2 0 (1+ ∂xu)∂zu+ ∂xw
0 0 0

(1+ ∂xu)∂zu+ ∂xw 0 (∂zu)2

 . (S1)

The most significant elastic response derived from bending originates from the Exx term, therefore the other non-zero
components are treated negligibly. As the G-L tensor, E, can be defined in terms of the displacement field, u = u(x,z)~i+ v~j+
w(x)~k (using the~i,~j and k̃ unit vector notation), and u(x,z) = uo −θ (x)z at any x, Exx can now be formulated as a function
of the components of u, and its derivatives as

Exx =
1
2

arctan2 [∂xw]︸ ︷︷ ︸
membrane−strain

+
1
2

z2

(
∂ 2

xxw
)2(

1+(∂xw)2
)2 − z

∂ 2
xxw

1+(∂xw)2

︸ ︷︷ ︸
bending−strain

. (S2)

Eq. S2 represents the Exx tensor component equipped by the full-nonlinearity of the curvature with a quadratic approxi-
mation in u of the displacement field (geometrical non-linearity).

1.2 The Pxx component of the 1st Piola-Kirchhoff stress tensor and the bending moment, M

The 1st Piola-Kirchhoff stress tensor, P describes the stress in the reference configuration, while the non-physical 2nd Piola-
Kirchhoff stress tensor, S, can be shown to be energy-conjugate to the G-L strain tensor, E. The S tensor can be given by the
product of the inverse deformation gradient tensor, F−1 and the 1st Piola-Kirchhoff tensor, P. Additionally, in Eqs. 6 and 9
in [1], the relevant components of the corresponding tensors are determined. Thus, a general constitutive law regarding the
components of the G-L, and the S tensors as

Sxx = φ (Exx,Exz,Ezx,Ezz) (S3)
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with some non-linear function φ can now be formulated. Assuming the aforementioned negligible contribution of the
Exz,Ezx,Ezz terms, Sxx = φ (Exx) is applied. Consequently, Pxx yields

Pxx = (F ·S)xx = (1+ ∂xu)φ

(
∂xu+

1
2
(∂xu)2 +

1
2

θ
2
)

. (S4)

This equation can now be both geometrically and mechanically non-linear. To expand on this point, let Sxx = φ (Exx) =
E1Exx+

1
2 E2E2

xx be the quadratic approximation of the relation between the 2nd Piola-Kirchhoff stress and the Green-Lagrange
strain with constant mathematical parameters of E1 and E2. It is worth noting here that this assumption for the stress-strain
relation is consistent with the third-order expansion in weakly nonlinear elasticity in which the strain energy is expanded up
to the third order in the power of the G-L tensor. In the view of the third-order expansion, Eq. S4 turns into the following form
after implementing the quadratic mechanical approximation as

Pxx = (F ·S)xx = (1+ ∂xu)
[

E1

(
∂xu+

1
2
(∂xu)2 +

1
2

θ
2
)]

+(1+ ∂xu)

[
1
2

E2

(
∂xu+

1
2
(∂xu)2 +

1
2

θ
2
)2
]
=

= E1

[
1
2

θ
2 + ∂xu

(
1+

1
2

θ
2
)
+

3
2
(∂xu)2 +

1
2
(∂xu)3

]
+

1
2

E2

[
1
4

θ
4 + ∂xu

(
θ

2 +
1
4

θ
4
)
+(∂xu)2

(
1+

3
2

θ
2
)]

+

+
1
2

E2

[
(∂xu)3

(
2+

1
2

θ
2
)
+

5
4
(∂xu)4 +

1
4
(∂xu)5

]
.

(S5)

Since ∂xu = ε0 − ∂xθz (see the first derivative of Eq. 5 in Sec. 3.2 in [1] with respect to x), and keeping the terms in ∂xu
and θ to have Pxx = Pxx(∂xu, (∂xu)2,θ 2,∂xuθ 2, (∂xu)2θ 2, (∂xu)3, (∂xu)3θ 2,θ 4,∂xuθ 4) in Eq. S5, the bending moment, defined

as of M def
=
∫

A PxxzdA (where A is defined as the beam cross-section), can also be determined as

M =
∫

A
PxxzdA =

∫
A

dAz
[

E1ε0 +
1
2

E1θ
2 +

3
2

E1ε
2
0 +

1
2

ε0E1θ
2
]
+
∫

A
dAz

[
1
2

E2ε
2
0 +

1
2

ε0E2θ
2 +

3
4

ε
2
0 E2θ

2
]
+

+
∫

A
dAz

[
1
8
(1+ ε0)E2θ

4
]
+︸ ︷︷ ︸

terms involving the static moment of inertia vanish after integration

+
∫

A
dAz

[
−∂xθ

(
E1z+ 3E1ε0z+

1
2

E1zθ
2
)]

+
∫

A
dAz

[
3
2

E1z2
∂

2
x θ − 1

2
E1z3 (

∂
3
x θ + h (ε0)

)]
−

−
∫

A
dAz

[
E2z∂xθ

[
ε0 +θ

2
(

1
2
+

3
2

ε0 +
1
8

θ
2
)]]

+
∫

A
dAz

[
1
2

E2z3 (
∂

3
x θ + h (ε0)

)(
2+

1
2

θ
2
)]

−

−
∫

A
dAz

[
E2z2

∂
2
x θ

(
1
2
+

3
4

θ
2
)]

,

(S6)

where h(ε0) represents a function with terms consisting of ε0. Incorporating the full non-linearity of the curvature defined
in Eq. 10 in [1], and applying −z∂xθ = −zκ∂xs, Eq. S6 yields

M = −E1κ∂xs
∫

A
dAz2 +

3
2

E1κ
2
∂

2
x s
∫

A
dAz3 −3E1ε0κ∂xs

∫
A

dAz2 − 1
2

E1θ
2
κ∂xs

∫
A

dAz2−

− 1
2

E1

(
(κ∂xs)3 + h (ε0)

)∫
A

dAz4 +

[
1
2
+

3
4

θ
2
]

E2κ
2
∂

2
x s
∫

A
dAz3−

−
[

1
2

θ
2 +

1
8

θ
4 + ε0

(
1+

3
2

θ
2
)]

E2κ∂xs
∫

A
dAz2 − 1

2
E2

(
(κ∂xs)3 + h (ε0)

)(
2+

1
2

θ
2
)∫

A
dAz4.

(S7)

Since
∫

A dAz2 = I is the second moment of inertia (R4π/4 for circular cross-section),
∫

A dAz3 = 0 by symmetry,
∫

A dAz4 =
I4th is the fourth moment of inertia (R6π/8 for circular cross-section) and by neglecting ε0, Eq. S7 finally becomes

M = −F(L− x) = E1κ∂xsI︸ ︷︷ ︸
I

+
1
2

E1θ
2
κ∂xsI +

1
2

E1 (κ∂xs)3 I4th︸ ︷︷ ︸
II

+

+

(
1
2

θ
2 +

1
8

θ
4
)

E2κ∂xsI︸ ︷︷ ︸
III

+
1
2

E2

(
2+

1
2

θ
2
)
(κ∂xs)3 I4th︸ ︷︷ ︸

IV

,
(S8)
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where F is the applied concentrated force at the free end of the beam, L represents the total length of the beam (see also
Fig. 1 in the main article).

Furthermore, the tensor component Pxx can also be formulated as the following,

Pxx =
1
2

E1θ
2 +

1
8

E2θ
4 − z

[
E1κ∂xs+

1
2

θ
2
(

E1 +E2

(
1+

1
4

θ
2
))

κ∂xs
]
+

+ z2
[

3
2

E1κ
2
∂

2
x s+E2

(
1
2
+

3
4

θ
2
)

κ
2
∂

2
x s
]
− z3

[[
1
2

E1 +
1
2

E2

(
2+

1
2

θ
2
)]

κ
3
∂

3
x s
]

.
(S9)

To expand the overall description of a non-linearly deflected nanowires, another important quantifier similar to Young’s
modulus in isotropic linear elasticity can be introduced. For this purpose, the incremental stretch modulus can be introduced
to study the nonlinear elastic response of an isotropic material. The role of this elastic modulus is to reflect stiffening (or
softening) in a material under strong loading. The gradient of the 1st Piola-Kirchhoff stress tensor, P, with respect to the
deformation gradient, F, or equivalently, the gradient of P with respect to the displacement gradient, F− I, provides the
definition of the incremental stretch modulus, Ỹincr, as

Ỹincr =
∂P

∂ (F− I)
. (S10)

Applying Eq. S5, the incremental stretch modulus yields its final closed form in terms of derivatives of the deflection
function as

Ỹincr =
∂Pxx

∂ (Fxx −1)
=

∂Pxx

∂ (∂xu)
= E1 (1+ ∂xu)2 +

(
1
2

θ
2 + ∂xu+

1
2
(∂xu)2

)
×

×
(

E1 +E2

[
1
2

(
1
2

θ
2 + ∂xu+

1
2
(∂xu)2

)
+(1+ ∂xu)2

])
,

(S11)

where ∂xu = −zκ∂xs (see also in Sec. 1.1) and we take into considerations made in Eq. S5 up to the terms of ∂ 3
x u and θ 4.

References
[1] M. Jacob, R. Lawitzki, W. Ma, C. Everett, G. Schmitz, G. Csiszár, Beyond linearity: bent crystalline copper nanowires in

the small-to-moderate regime, Nanoscale Adv., 2020 (2), 3002-3016.

3


