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Spain
3)Global TCAD Solutions GmbH., Bösendorferstraße 1/12, 1010, Vienna,
Austria.
4)Pervasive Electronics Advanced Research Laboratory, CITIC, Universidad de Granada, 18071,
Granada, Spain.

(Dated: 13 November 2020)

I. Self-consistent numerical solver

The device electrostatics and transport are self-consistently solved so to obtain the potential, the
Fermi level, and the carrier concentration at each position of the spatial grid, as well as the current
through the semiconductor layer. A schematic view of the device is depicted in Figure S.1.
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FIG. S.1: Schematic of the 2DM-based FET showing the device geometry, the coordinate
reference system, as well as the lengths associated to the channel and access regions. The gate,

drain and source terminals are labeled as G, D and S, respectively.

The inputs for these calculations are the semiconductor properties (density of states, mobility,
doping) as well as the insulator ones (dielectric constant, trap energetic profiles), and the device
bias conditions. In particular the two-dimensional Poisson equation is numerically treated in a
cross-section of the device, assuming invariance along the width:

∇ (ε(x, y)∇V (x, y)) = −ρ(x, y) (S.1)

where ε is the dielectric constant, ρ is the charge density, comprising mobile carriers, fixed charges
and traps, and V is the potential.

As for the transport, a drift-diffusion regime is considered along one dimension, assuming that
the width of the 2D material sample is large enough, so not to experience any border effect. In the
case of electrons the current density is given by:

Jn = qnµn∇xV + qDn∇xn (S.2)

Electronic Supplementary Material (ESI) for Nanoscale Advances.
This journal is © The Royal Society of Chemistry 2021



2

where q is the net electron charge, Dn the diffusion coefficient, µn the electron mobility, n the
carrier longitudinal density and Jn the current density. An equivalent expression is used for holes.
The steady-state continuity equation is:

∇xJ = 0 (S.3)

The impact of non-idealities is also included in the simulations. In particular, two spoiling
effects are considered: interface traps and electric field dependent mobility. For the former, an
arbitrary energetic profile can be defined to evaluate the surface charge density associated to a
certain insulator interface:

Qit = −q
∫ E C

0
Dit,A (E ) f (E ) dE + q

∫ 0

E V

Dit,D (E ) [1− f (E )] dE (S.4)

where Qit is the surface density charge, E the energy referred to the intrinsic Fermi level (E −Ei),
Dit,A (Dit,D) the density of acceptor (donor) traps, f(E) the Fermi function, and E C (E V) the
conduction (valence) band edge. For the mobility degradation originated by the electric field, the
following relation is employed1

µ = µ0[
1 +

(
µ0
vsat
|Ex|

)β]1/β (S.5)

where µ0 is the low field mobility, vsat is the saturation velocity, β is the saturation coefficient and
Ex electric field along the longitudinal coordinate. This expression is applied to both electron and
hole mobilities.

II. Access and contact resistances

In the intrinsic device, the semiconductor layer can be split into three regions: (i) source access
region, (ii) channel and (iii) drain access region. The resistance of each of these regions can be
calculated as:

Ri,acc =
∫ L2

L1

1
q (µnnL + µppL)dl (S.6)

where L1 = 0, La, and La +Lg; and L2 = La, La +Lg, and 2La +Lg = Lch; are the integration limits
for the source access, gate-controlled channel and drain access resistance calculation respectively
(see Figure S.1 for a detailed representation). La, Lch, Lg, stand for the access region, the channel
and the gate lengths, respectively.

In addition to the intrinsic device, we also consider the extrinsic source and drain resistances
(Rs and Rd) due to the metal-2DM contacts. At the numerical solver level, they are included
in the structure as doped regions with fixed and limited conductivity placed at each side of the
semiconductor layer.

III. Dynamic operation: terminal charges and intrinsic capacitance scheme

In order to compute the dynamic operation of a three-terminal device, the charge associated
to each terminal is evaluated to later determine the intrinsic capacitances2. Thus, the charges
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associated to the gate, drain and source terminals are calculated following the Ward-Dutton charge
partition scheme, which ensures charge conservation3:

Qg = W

∫ Lch

0
−(p(x)− n(x))dx (S.7)

Qd = W

∫ Lch

0

x

Lch
(p(x)− n(x))dx (S.8)

Qs = W

∫ Lch

0

(
1− x

Lch

)
(p(x)− n(x))dx (S.9)

where g, d and s indicate that the charge is associated to gate, drain and source respectively. Then,
we compute the intrinsic capacitances of a three-terminal device as:

Cij =
{

∂Qi

∂Vj
i = j

−∂Qi

∂Vj
i 6= j

, i, j = g, d, s (S.10)

IV. Small-signal approximation

When electronic devices operate in analog and radio-frequency applications, their terminals are
biased with a DC voltage over which a time-varying signal is superimposed. If the amplitude of the
time-varying signal is small enough, the resulting current and charge variations can be expressed
in terms of it using linear relations. This way, a non-linear device can be treated as a linear circuit
with conductance and capacitance elements connected forming a lumped network.

As depicted in Figure 2 of the manuscript, the model considers the capacitances Cgd, Cdg, Csd
and Cgs. The latter cannot be evaluated using Eq. (S.10) as in the simulations Vs is defined as the
reference potential. To overcome this issue, we use the charge conservation condition on the gate
charge2. ∑

j

∂Qg
∂Vj

= 0⇒ Cgs = Cgg − Cgd (S.11)

The resistances required by the small-signal model are obtained as exposed before in (S.6),
except for Rg that is considered as an input parameter. Once the values of the discrete elements
are calculated, the small-signal model can be used to evaluate the two main figures of merit for
radio-frequency applications, the cut-off frequency fT, and the maximum oscillation frequency fmax.
1P. C. Feijoo, D. Jiménez and X. Cartoixà, 2D Materials, 2016, 3, 025036.
2F. Pasadas and D. Jimenez, IEEE Transactions on Electron Devices, 2016, 63, 2936–2941.
3D. Ward and R. Dutton, IEEE Journal of Solid-State Circuits, 1978, 13, 703–708.
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