Theoretical study of the influence of doped oxygen group elements on

the properties of organic semiconductors

Anmin Liu^{a,*}, Mengfan Gao^a, Yan Ma^{a, e, *}, Xuefeng Ren^{b,*}, Liguo Gao^a, Yanqiang

Li ^a, Tingli Ma ^{c, d}

^a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian

University of Technology, China.

E-mail: liuanmin@dlut.edu.cn, anmin0127@163.com

^b School of Ocean Science and Technology, Dalian University of Technology, Panjin,

124221, China.

E-mail: renxuefeng@dlut.edu.cn

^c Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China.

^d Graduate School of Life Science and Systems Engineering, Kyushu Institute of

Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan.

^e School of Economics and Finance, Xi'an Jiaotong University.

E-mail: 18304280768@163.com

Position	Fukui(-)	Fukui(+)	Position	Fukui(-)	Fukui(+)	Position	Fukui(-)	Fukui(+)
C(1)	-0.002	0.004	C(10)	0.026	0.043	C(19)	0.011	0.027
C(2)	0.009	0.005	C(11)	0.010	0017	C(20)	0.029	0.036
C(3)	0.011	0.027	C(12)	-0.001	-0.003	C(21)	0.009	0.005
C(4)	0.006	-0.003	C(13)	0.029	0.036	C(22)	-0.002	0.004
S(5)	0.103	0.065	S(14)	0.132	0.069	S(23)	0.103	0.065
C(6)	0.017	0.016	C(15)	-0.001	-0.003	C(24)	0.017	0.016
C(7)	0.016	0.030	C(16)	0.010	0.017	C(25)	0.016	0.030
C(8)	0.019	0.009	C(17)	0.026	0.043	C(26)	0.019	0.009
C(9)	0.011	0.024	C(18)	0.006	-0.003	C(27)	0.011	0.024

Table S1. Fukui (-), Fukui (+) indices for each atom of seven-membered benzothiophene

Fig. S1. Schematic diagram of the structure of the doping site of the oxygen group elemenst at the seven-membered benzothiophene (a: seven-membered benzothiophene; b: mono oxygen group elements doped benzothiophene; c: binary oxygen group elements doped benzothiophene; d: ternary oxygen group elements doped benzothiophene.

gray: C, white: H, yellow: S, red: Oxygen group elements)

Fig. S2. (a) E_{LUMO} , E_{HOMO} , and ΔE of seven-membered benzothiophene doped with O atom; (b) Schematic diagram of total energy of each substance (a: seven-membered benzothiophene;

b: mono O-doped seven-membered benzothiophene ; c: binary O-doped seven-membered benzothiophene; d: ternary O-doped seven-membered benzothiophene)

Fig. S3. (a) E_{LUMO}, E_{HOMO}, and ΔE of seven-membered benzothiophene doped with Se atom;
(b) Schematic diagram of total energy of each substance (a: seven-membered benzothiophene; b: mono Se-doped seven-membered benzothiophene ; c: binary Se-doped seven-membered benzothiophene)

Molecule	E _{HOMO} /eV	E_{LUMO}/eV	$\Delta E/\mathrm{eV}$	Total energy/Ha	
seven-membered	1 860	2 741	2 128	2220 789	
benzothiophene	-4.809	-2.741	2.120	-3230.788	
mono Te-doped seven-	-4 823	-2 870	1 953	-8330 9/8	
membered benzothiophene	-4.825	-2.070	1.755	-0550.740	
binary Te-doped seven-	-4 790	-2 846	1 944	-14546 716	
membered benzothiophene	-4.790	-2.040	1.744	-14340.710	
ternary Te-doped seven-	-4 658	-2.810	1 848	-20762 485	
membered benzothiophene	-7.000	-2,010	1.040	-20702.405	

Table S2. E_{HOMO} , E_{LUMO} , ΔE and total energy of undoped and Te-doped seven-membered benzothiophene

Fig. S4. Schematic diagram of the structure of the doping site of the oxygen group elements at the o-pentacene (a: o-pentacene; b: mono oxygen group elements doped o-pentacene; c: binary oxygen group elements doped o-pentacene (two-four ring);
d: binary oxygen group elements doped o-pentacene(one-five ring).
gray: C, white: H, red: Oxygen group elements)

Fig. S5. (a) E_{LUMO} , E_{HOMO} , and ΔE of o-pentacene doped with O atoms; (b) Schematic diagram of total energy of each substance (a: o-pentacene; b: mono-O doped o-pentacene; c: binary O-doped o-pentacene (two-four ring); d: binary O-doped o-pentacene (one-five ring))

Fig. S6. (a) E_{LUMO} , E_{HOMO} , and ΔE of o-pentacene doped with S atoms; (b) Schematic diagram of total energy of each substance (a: o-pentacene; b: mono-S doped o-pentacene; c: binary S-doped o-pentacene (two-four ring); d: binary S-doped o-pentacene (one-five ring))

Fig. S7. (a) E_{LUMO}, E_{HOMO}, and ΔE of o-pentacene doped with Se atoms;
(b) Schematic diagram of total energy of each substance
(a: o-pentacene; b: mono-Se doped o-pentacene; c: binary Se-doped o-pentacene (two-four ring); d: binary Se-doped o-pentacene (one-five ring))

Molecule	E _{HOMO} /eV	E_{LUMO}/eV	$\Delta E/eV$	Total energy/Ha	
o-pentacene	-4.877	-2.399	2.478	-845.997	
mono-Te doped o-pentacene	-4.977	-2.678	2.299	-7382.528	
binary Te-doped o-pentacene	4 902	2 520	2 354	-13919.001	
(two-four ring);	-4.093	-2.539	2.334		
binary Te-doped o-pentacene (one-	5 004	2 5 1 0	2 404	-13918.987	
five ring)	-3.004	-2.310	2.494		

Table S3. E_{HOMO} , E_{LUMO} , ΔE and total energy of undoped and Te-doped o-pentacene

Position	Fukui(-)	Fukui(+)	Position	Fukui(-)	Fukui(+)	Position	Fukui(-)	Fukui(+)
C(1)	0.021	0.011	C(9)	0.022	0.026	C(17)	0.011	0.010
C(2)	0.021	0.014	C(10)	0.039	0.029	C(18)	0.019	0.020
C(3)	0.021	0.014	S(11)	0.071	0.079	C(19)	0.017	0.019
C(4)	0.021	0.011	C(12)	-0.003	0.004	C(20)	0.011	0.011
S(5)	0.087	0.087	C(13)	-0.003	0.004	C(21)	0.032	0.035
C(6)	0.022	0.026	C(14)	0.017	0.019	C(22)	0.011	0.010
C(7)	0.039	0.029	C(15)	0.011	0.011	C(23)	0.019	0.020
S(8)	0.074	0.080	C(16)	0.032	0.035			

Table S4. Fukui (-), Fukui (+) indices for each atom of DP-DTT

Fig. S8. Schematic diagram of the structure of the oxygen group element at the doping site of DP-DTT (a: DP-DTT; b: mono oxygen group elements doped DP-DTT; c: binary oxygen group elements doped DP-DTT; d: ternary oxygen group elements doped DP-DTT.

gray: C, white: H, red: Oxygen group elements)

Fig. S9. (a) E_{LUMO}, E_{HOMO}, and ΔE of DP-DTT doped with O atom; (b) Schematic diagram of total energy of each substance (a: DP-DTT; b: mono O-doped DP-DTT;
c: binary O-doped DP-DTT; d: ternary O-doped DP-DTT)

Fig. S10. (a) *E*_{LUMO}, *E*_{HOMO}, and Δ*E* of DP-DTT doped with Se atom; (b) Schematic diagram of total energy of each substance (a: DP-DTT; b: mono Se-doped DP-DTT;
c: binary Se-doped DP-DTT; d: ternary Se-doped DP-DTT)

Table S5. E_{HOMO} , E_{LUMO} , ΔE and total energy of undoped and Te-doped DP-DTT

Molecule	E _{HOMO} /eV	E_{LUMO}/eV	$\Delta E/eV$	Total energy/Ha	
DP-DTT	-6.160	-5.735	0.425	-1954.536	
mono Te-doped	6 171	5 821	0.350	8170 724	
DP-DTT	-0.171	-3.821	0.330	-81/0./34	
binary Te-doped	6 075	5 762	0 313	-14386.396	
DP-DTT	-0.075	-3.702	0.313		
ternary Te-doped	5 021	5 661	0.267	20602 174	
DP-DTT	-5.951	-3.004	0.207	-20002.174	

Table S6. Fukui (-), Fukui (+) indices for each atom of pentacene

Position	Fukui(-)	Fukui(+)	Position	Fukui(-)	Fukui(+)	Position	Fukui(-)	Fukui(+)
C(1)	0.030	0.022	S(8)	0.098	0.106	C(15)	0.020	0.021
C(2)	0.020	0.015	C(9)	0.020	0.021	C(16)	0.053	0.053
C(3)	0.020	0.015	C(10)	0.053	0.053	S(17)	0.096	0.105
C(4)	0.030	0.022	S(11)	0.096	0.105	H(18)	0.048	0.048
S(5)	0.095	0.104	C(12)	0.009	0.007	H(19)	0.055	0.054
C(6)	0.009	0.007	C(13)	0.023	0.018	H(20)	0.048	0.048
C(7)	0.023	0.018	S(14)	0.098	0.106	H(21)	0.055	0.054

Fig. S11. Schematic diagram of the structure of the doping site of the oxygen group elements at the pentacene (a: pentacene; b: mono oxygen group elements doped pentacene; c: binary oxygen group elements doped pentacene (two-four ring); d: binary oxygen group elements doped

pentacene (one-five ring); e: ternary oxygen group elements doped pentacene (two-three-four ring); f: ternary oxygen group elements doped pentacene (one-three-five-ring); g: quaternary oxygen group elements doped pentacene; h: five membered oxygen group-doped pentacene. gray: C, white: H, red: Oxygen group element)

Fig. 12. (a) E_{LUMO} , E_{HOMO} , and ΔE of pentacene doped with O atom; (b) Schematic diagram of total energy of each substance (a: pentacene; b: mono O-doped pentacene; c: binary O-doped pentacene (two-four ring); d: binary O-doped pentacene (one-five ring); e: ternary O-doped pentacene (two-three-four ring); f: ternary O-doped pentacene (one-three-five-ring); g: quaternary O-doped pentacene; h: five membered O-doped pentacene)

Fig. S13. (a) E_{LUMO} , E_{HOMO} , and ΔE of pentacene doped with Se atom; (b) Schematic diagram of total energy of each substance (a: pentacene; b: mono Se-doped pentacene; c: binary Se-doped pentacene (two-four ring); d: binary Se-doped pentacene (one-five ring); e: ternary Se-doped pentacene (two-three-four ring); f: ternary Se-doped pentacene (one-three-five-ring); g: quaternary Se-doped pentacene; h: five membered Se-doped pentacene)

Molecule	E_{HOMO}/eV	E _{LUMO} /eV	$\Delta E/\mathrm{eV}$	Total energy/Ha
pentacene	-4.640	-2.327	2.313	-2449.494
mono Se-doped pentacene	-4.849	-2.612	2.237	-8665.292
binary Se-doped pentacene	4 707	2 522	2 1 9 5	14001 060
(two-four ring)	-4./0/	-2.322	2.183	-14881.008
binary Se-doped pentacene	4 600	2 552	2 1 4 7	14991 059
(one-five ring)	-4.699	-2.332	2.147	-14001.000
ternary Se-doped pentacene	4 650	2 570	2 0.00	21006 842
(two-three-four ring)	-4.030	-2.370	2.080	-21090.843
ternary Se-doped pentacene	4 6 4 0	2 560	2 0.01	21006 824
(one-three-five-ring)	-4.049	-2.308	2.061	-21090.834
quaternary Se-doped pentacene	-4.593	-2.585	2.008	-27312.609
five membered Se-doped pentacene	-4.557	-2.629	1.928	-33528.383

Table S7. E_{HOMO} , E_{LUMO} , ΔE and total energy of undoped and Te-doped pentacene