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Theoretical Formulation: 

The trapping forces and corresponding potentials along the axial directions are calculated using 

the dipole approximation for Gaussian beam profile. The forces acting on the trapped dielectric 

particles are the gradient force and the scattering force. While in the case of metallic particles, 

there is an additional contribution from the absorption forces. Under tight focusing conditions, 

the axial forces around the geometric focus can be expression as follows [1]: 
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where 𝑃𝑝𝑒𝑎𝑘/𝑎𝑣𝑔 is peak/average power under pulsed/continuous-wave (CW) excitations, 

respectively: 𝑃𝑝𝑒𝑎𝑘 =
𝑃𝑎𝑣𝑔

𝑓×𝜏
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2 are reduced co-ordinates. Here, 𝜔0 is spot size 

at geometric focus which is  𝜔0 =
0.82𝜆

𝑁𝐴
; NA is the numerical aperture of the objective,  𝑘 =

2𝜋𝑛𝑤

𝜆
 is the propagation vector. The polarizability is a significant factor determining the 

magnitude as well as the direction of force acting on the trapped particle. For the hybrid 

particles, the effective polarizability per unit volume is expressed in terms of the polarizabilities 

for core and shell [2]: 
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where, 𝑛𝑐, 𝑛𝑠, and  𝑛𝑤 are the refractive index of core, shell, and water (medium), respectively, 

𝑓 =
𝑎𝑐

𝑎𝑠
 is the ratio of the radius of core (𝑎𝑐) to that of shell (𝑎𝑠). In the limit  𝑛𝑐 = 𝑛𝑠 = 𝑛𝑝 the 

expression for the polarizability per unit volume will yield that for homogeneous nanoparticle. 

𝑉 in the above formula is 4𝜋𝑛𝑤2𝜖0𝑎𝑠
3.  In case of silver particles, the refractive index is 

expressed as 𝑛𝑝 = 𝑛0
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𝑝
 is a linear real part of refractive index and 𝜅0
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imaginary part which is directly related to the absorptivity [3]. For dielectric particles, the 

imaginary part does not significantly contribute because absorption is negligible, whereas, in 

the case of silver particles, absorption is significant, and the overall contribution of the 

imaginary part is more than the real part of the refractive index. For silver nanoparticles 

refractive index can be calculated as: 𝑛0
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corrected Drude-Lorentz model for silver nanoparticles [4]. All the relevant parameters used 

in simulations are listed in table 1 in main text. 

Total force acting on the particle in the case of dielectric and metallic particles along axial 

direction can be written as: 

𝐹𝑡𝑜𝑡𝑎𝑙,𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑎𝑥𝑖𝑎𝑙(𝑧; 𝑟 = 0) = F𝑎𝑥𝑖𝑎𝑙,𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑧; 𝑟 = 0) +  F𝑎𝑥𝑖𝑎𝑙,𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔(𝑧; 𝑟 = 0)    (5) 

𝐹𝑡𝑜𝑡𝑎𝑙,𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐,𝑎𝑥𝑖𝑎𝑙(𝑧; 𝑟 = 0) = F𝑎𝑥𝑖𝑎𝑙,𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑧; 𝑟 = 0) +  F𝑎𝑥𝑖𝑎𝑙,𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔(𝑧; 𝑟 = 0) +

F𝑎𝑥𝑖𝑎𝑙,𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛(𝑧; 𝑟 = 0)  (6) 

Numerical integration of the force expressions yields the potential well associated with the 

optical trap as given below: 

𝑈𝑎𝑥𝑖𝑎𝑙(𝑟;  𝑧) =  − ∫ 𝐹𝑎𝑥𝑖𝑎𝑙(𝑟;  𝑧) 𝑑𝑧                                         (7) 

In addition to this, the role of nonlinear effects is investigated by incorporating the third, fifth, 

and seventh order nonlinear refractive indices for silver particles, and second-order nonlinear 

refractive indices for dielectric particles. The total refractive index, including optical 

nonlinearity, can be calculated from the given expression for silver particles: 
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for polystyrene nanoparticles: 

𝑛𝑝 = 𝑛0
𝑝 +  𝑛2
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Here, 𝐼𝑝𝑒𝑎𝑘/𝑎𝑣𝑔 is peak and average intensity of the focused Gaussian beam which can be 

described as [5]: 
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Since the nonlinear refractive index of water is very small, it does not contribute significantly 

to the linear refractive index for low average power and can be neglected for both CW and 

pulsed excitations (i.e. 𝑛𝑤 ≈ 𝑛0
𝑤 ) [5]. 
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Figures and figure captions: 

 

Fig. S1. Plots of escape potential against particle size at 100 mW average power under CW excitation for fixed 

NA 1.4. 

 

Fig. S2. Plots of escape potential against core radius by fixing shell radius a) 20 nm, b) 30 nm, and c) 40 nm for 

silver-polystyrene nanoparticles under CW excitation at 100 mW average power. 

 

Fig. S3. Plots of escape potential against shell radius by fixing core radius a) 5 nm, b) 10 nm, and c) 15 nm for 

silver-polystyrene nanoparticles under CW excitation at 100 mW average power. 



 

Fig. S4. Plots of escape potential against core radius by fixing shell radius a) 20 nm, b) 30 nm, and c) 40 nm at 

100 mW average power, and d) 100 mW, e) 300 mW, and f) 500 mW for fixed shell radius 20 nm for silver-

polystyrene nanoparticles under pulsed excitation. 

 

 

 

Fig. S5. Plots of escape potential against shell radius by fixing core radius a) 5 nm, b) 10 nm, and c) 15 nm at 

100 mW average power for silver-polystyrene nanoparticles under pulsed excitation. 

 


