New Journal of Chemistry

Electronic Supplementary Information

for

Dinuclear aluminum complexes bearing methylene-bridged phenoxy-imine ligands and their application in the ring-opening polymerization of *rac*-lactide

Nattawut Yuntawattana, Chutikan Nakhonkhet, Tanin Nanok, Kanokon Upitak,

and Pimpa Homnirun*

Laboratory of Catalysts and Advanced Polymer Materials, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

*E-mail: fscipph@ku.ac.th

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 ppm

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 ppm

Fig. S3 ¹H NMR spectrum of **3** in CDCl₃ at 298 K.

Fig. S4 ¹H NMR spectrum of **4** in CDCl₃ at 298 K.

Fig. S5 ¹H NMR spectrum of 5 in CDCl₃ at 298 K.

Fig. S6 ¹H NMR spectrum of **6** in CDCl₃ at 298 K.

Fig. S7 ¹H NMR spectrum of 7 in CDCl₃ at 298 K.

Fig. S8 ¹H NMR spectrum of 8 in CDCl₃ at 298 K.

Fig. S9 ¹H NMR spectrum of 9 in CDCl₃ at 298 K.

Fig. S10 ¹H NMR spectrum of **10** in CDCl₃ at 298 K.

Fig. S11 ¹H NMR spectrum of 11 in CDCl₃ at 298 K.

Fig. S12 ¹H NMR spectrum of **12** in CDCl₃ at 298 K.

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 ppm

Fig. S13 ¹H NMR spectrum of 13 in CDCl₃ at 298 K.

Fig. S14 ¹H NMR spectrum of **14** in CDCl₃ at 298 K.

Fig. S15 Plot of PLA $M_n(\bullet)$ and PDI (O) as a function of monomer conversion for a *rac*-LA polymerization using **2**/BnOH ([LA]₀:[Int]₀:[BnOH]₀ = 100:1:2, toluene, 70 °C).

Fig. S16 Plot of PLA $M_n(\bullet)$ and PDI (O) as a function of monomer conversion for a *rac*-LA polymerization using **3**/BnOH ([LA]₀:[Int]₀:[BnOH]₀] = 100:1:2, toluene, 70 °C).

Fig. S17 Plot of PLA $M_n(\bullet)$ and PDI (O) as a function of monomer conversion for a *rac*-LA polymerization using 4/BnOH ([LA]₀:[Int]₀:[BnOH]₀ = 100:1:2, toluene, 70 °C).

Fig. S18 Plot of PLA $M_n(\bullet)$ and PDI (O) as a function of monomer conversion for a *rac*-LA polymerization using **5**/BnOH ([LA]₀:[Int]₀:[BnOH]₀ = 100:1:2, toluene, 70 °C).

Fig. S19 Plot of PLA $M_n(\bullet)$ and PDI (O) as a function of monomer conversion for a *rac*-LA polymerization using **6**/BnOH ([LA]₀:[Int]₀:[BnOH]₀ = 100:1:2, toluene, 70 °C).

Fig. S20 Plot of PLA $M_n(\bullet)$ and PDI (O) as a function of monomer conversion for a *rac*-LA polymerization using 7/BnOH ([LA]₀:[Int]₀:[BnOH]₀ = 100:1:2, toluene, 70 °C).

Fig. S21 Plot of PLA $M_n(\bullet)$ and PDI (O) as a function of monomer conversion for a *rac*-LA polymerization using **8**/PhCH₂OH ([LA]₀:[Int]₀:[BnOH]₀ = 100:1:2, toluene, 70 °C).

Fig. S22 Plot of PLA $M_n(\bullet)$ and PDI (O) as a function of monomer conversion for a *rac*-LA polymerization using **9**/BnOH ([LA]₀:[Int]₀:[BnOH]₀ = 100:1:2, toluene, 70 °C).

Fig. S23 Plot of PLA $M_n(\bullet)$ and PDI (O) as a function of monomer conversion for a *rac*-LA polymerization using **10**/BnOH ([LA]₀:[Int]₀:[BnOH]₀ = 100:1:2, toluene, 70 °C).

Fig. S24 Plot of PLA $M_n(\bullet)$ and PDI (O) as a function of monomer conversion for a *rac*-LA polymerization using **11**/BnOH ([LA]₀:[Int]₀:[BnOH]₀ = 100:1:2, toluene, 70 °C).

Fig. S25 Plot of PLA $M_n(\bullet)$ and PDI (O) as a function of monomer conversion for a *rac*-LA polymerization using **12**/BnOH ([LA]₀:[Int]₀:[BnOH]₀ = 100:1:2, toluene, 70 °C).

Fig. S26 ¹H NMR spectra of (a) complex **8**, (b) complex **8** + 2 eq. BnOH ([Int]₀:[BnOH]₀ = 1:2) (c) complex **8** + 4 eq. BnOH ([Int]₀:[BnOH]₀ = 1:4), and (d) complex **8** + 8 eq. BnOH ([Int]₀:[BnOH]₀ = 1:8) in d^8 -toluene at 70 °C (* = d^8 -toluene).

Fig. S27 ¹H NMR spectra of (a) the reaction mixture of complex **8** and 2 equivalents of BnOH, (b) 10 min (c) 13 min, (d) 16 min, (e) 19 min, (f) 21 min, (g) 24 min after the addition of excess about of BnOH into the NMR solution of (a) in d^8 -toluene at 70 °C (* = d^8 -toluene).

Fig. S28 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-LA at 70 °C in toluene (500 MHz, CDCl₃) with complex **1**/BnOH.

Fig. S29Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-LA at 70 °C in toluene (500 MHz, CDCl₃) with complex **2**/BnOH.

Fig. S30 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-LA at 70 °C in toluene (500 MHz, CDCl₃) with complex **3**/BnOH.

Fig. S31 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-LA at 70 °C in toluene (500 MHz, CDCl₃) with complex 4/BnOH.

Fig. S32 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-LA at 70 °C in toluene (500 MHz, CDCl₃) with complex **5**/BnOH.

Fig. S33 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-LA at 70 °C in toluene (500 MHz, CDCl₃) with complex **6**/BnOH.

Fig. S34 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-LA at 70 °C in toluene (500 MHz, CDCl₃) with complex **7**/BnOH.

Fig. S35 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-LA at 70 °C in toluene (500 MHz, CDCl₃) with complex **8**/BnOH.

Fig. S36 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-LA at 70 °C in toluene (500 MHz, CDCl₃) with complex **9**/BnOH.

Fig. S37 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-LA at 70 °C in toluene (500 MHz, CDCl₃) with complex **10**/BnOH.

Fig. S38 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-LA at 70 °C in toluene (500 MHz, CDCl₃) with complex **11**/BnOH.

Fig. S39 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes $1 (\bullet)$ and $7 (\bullet) ([LA]_0:[Int]_0:[BnOH]_0 = 100:1:2, [LA]_0 = 0.83 \text{ M}, [Int]_0 = 8.33 \text{ mM}).$

Fig. S40 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes **3**(\bullet) and **9**(\blacksquare) ([[LA]₀:[Int]₀:[BnOH]₀ = 100:1:2, [LA]₀ = 0.83 M, [Int]₀ = 8.33 mM).

Fig. S41 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes $4 (\bullet)$ and $10 (\blacksquare) ([LA]_0:[Int]_0:[BnOH]_0 = 100:1:2, [LA]_0 = 0.83 \text{ M}, [Int]_0 = 8.33 \text{ mM}).$

Fig. S42 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes **5** (\bullet) and **11** (\blacksquare) ([LA]₀:[Int]₀:[BnOH]₀ = 100:1:2, [LA]₀ = 0.83 M, [Int]₀ = 8.33 mM).

Fig. S43Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes **6**(\bullet) and **12**(\blacksquare) ([LA]₀:[Int]₀:[BnOH]₀ = 100:1:2, [LA]₀ = 0.83 M, [Int]₀ = 8.33 mM).

Fig. S44 Plot of PLA $M_n(\bullet)$ and PDI (O) as a function of monomer conversion for a *rac*-LA polymerization using **13**/BnOH ([LA]₀:[Int]₀:[BnOH]₀ = 50:1:1, toluene, 70 °C).

Fig. S45 Plot of PLA $M_n(\bullet)$ and PDI (O) as a function of monomer conversion for a *rac*-LA polymerization using **14**/BnOH ([LA]₀:[Int]₀:[BnOH]₀ = 50:1:1, toluene, 70 °C).

Fig. S46 Semilogarithmic plots of *rac*-LA conversion *versus* time in toluene at 70 °C with complex **13** (\bullet) ([LA]₀:[Int]₀:[BnOH]₀ = 50:1:1, [LA]₀ = 0.42 M, [Int]₀ = 8.33 mM).

Fig. S47 Semilogarithmic plots of *rac*-LA conversion *versus* time in toluene at 70 °C with complex **13** (\bullet) ([LA]₀:[Int]₀:[BnOH]₀ = 50:1:1, [LA]₀ = 0.42 M, [Int]₀ = 8.33 mM).

Fig. S48 Al-Al distances in two configurations of complexes I (a) and 6 (b) optimized at the M06-2X/6-311G(d,p) method.

Fig. S49 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-LA at 70 °C in toluene (500 MHz, CDCl₃) with complex **13**/BnOH.

Fig. S50 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-LA at 70 °C in toluene (500 MHz, CDCl₃) with complex **14**/BnOH.

Computational details

All geometry optimizations were carried out in the gas phase without molecular symmetry constraints using the hybrid meta exchange-correlation functional with double the amount of nonlocal exchange¹⁻³ (M06-2X) level of theory as implemented in the Gaussian09 program package.⁴ The standard all-electron Pople basis set 6-311G(d,p) was applied to all atoms in the systems.⁵

- [1] U. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 1–17.
- [2] Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.
- [3] Y. Zhao and D. G. Truhlar, Acc. Chem. Res., 2008, 41, 157–167.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. R aghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09*, revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
- [5] W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261.