Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

## **Supplementary Information**

## Facile Synthesis of Highly Efficient Co/Cu@NC Catalyst for Base-free

## **Oxidation of Alcohols to Esters**

Jiusheng Jiang, Xiang Li, Shengyu Du, Langchen Shi, Pingping Jiang, Pingbo Zhang,

Yuming Dong, Yan Leng\*

School of Chemical and Material Engineering, Jiangnan University, Lihu Road 1800#,

Wuxi 214122, Jiangsu, China.

E-mail: yanleng@jiangnan.edu.cn.



Fig. S1 TGA curves of CoCu@NC<sub>2</sub>.



Fig. S2 Raman pattern of CoCu@NC<sub>2</sub>.



Fig. S3 XPS survey spectra of (a) CoCu@NC<sub>2</sub> (b) Co@NC<sub>2</sub>.



Fig. S4 GC spectra for Oxidative Esterification of Benzyl Alcohol over CoCu@NC2



Fig. S5 XRD patterns of CoCu@NC<sub>1</sub> and CoCu@NC<sub>3</sub>.



Fig. S6 Catalytic reusability of CoCu@NC $_2$  for oxidative esterification of benzyl alcohol



Fig. S7 XRD patterns of fresh and recycled CoCu@NC<sub>2</sub>.



Fig. S8 SEM images of CoCu@NC<sub>2</sub>.

| Catalyst                               | Condition                                                         | Conv./Yield(%)  | Select. (%) | Ref.         |
|----------------------------------------|-------------------------------------------------------------------|-----------------|-------------|--------------|
| NaAuCl <sub>4</sub> ·2H <sub>2</sub> O | 1 atm O <sub>2</sub> , 80°C, 5 h, K <sub>2</sub> CO <sub>3</sub>  | 98              | 99          | 1            |
| Co-CoO@NC                              | 1 bar O <sub>2</sub> , 80°C, 12 h, K <sub>2</sub> CO <sub>3</sub> | 100             | 100         | 2            |
| Co@NC                                  | 1 bar O <sub>2</sub> , 80°C, 20 h, K <sub>2</sub> CO <sub>3</sub> | 100             | 98          | 3            |
| Co3O4-N@C                              | 1 bar O <sub>2</sub> , 60°C, 24 h, K <sub>2</sub> CO <sub>3</sub> | 99              | 97          | 4            |
| Co3O4/NGr@C                            | 1 bar O <sub>2</sub> , 60°C, 24 h, K <sub>2</sub> CO <sub>3</sub> | 97              |             | 5            |
| NCI-Co/Cu 5                            | 1 bar $O_2$ , 70°C, 16 h, without $K_2CO_3$                       | 92 ± 2          |             | 6            |
| Co@NC-4                                | 1 bar $O_2$ , 60°C, 12 h, without $K_2CO_3$                       | 99              | 98          | 7            |
| Co@NOSC                                | $O_2$ ball, 60°C, 24 h, without $K_2CO_3$                         | 97              | 98          | 8            |
| Co@C-N(800)                            | 1 atm air, 25°C, 96 h, 4ml Hexane as solvent                      | 99              | 100         | 9            |
| Au-Pd@HT-PO4 <sup>3-</sup>             | 1 atm O <sub>2</sub> , 55°C, 24 h, light intensity 0.5 W/cm       | <sup>2</sup> 76 |             | 10           |
| CoCu@NC <sub>2</sub>                   | $O_2$ ball, 60°C, 12 h, without $K_2CO_3$                         | 100             | 100         | Present work |

Table S1: Comparative performance of CoCu@NC<sub>2</sub> catalyst with prior reported art.

## REFERENCES

- (1) L. Wang, J. Li, W. Dai, Y. Lv, Y. Zhang, S. Gao, Green Chem., 2014, 16, 2164-2173.
- (2) Y. X. Zhou, Y. Z. Chen, L. Cao, J. Lu, H. L. Jiang, *Chem. Commun.*, 2015, **51**, 8292-8295.
- (3) F. Mao, Z. Qi, H. Fan, D. Sui, R. Chen, J. Huang, *RSC Adv.*, 2017, 7, 1498-1503.
- (4) R. V. Jagadeesh, H. Junge, M. M. Pohl, J. Radnik, A. Brückner, M. Beller, J. Am.
- Chem. Soc., 2013, **135**, 10776-10782.
- (5) R. V. Jagadeesh, T. Stemmler, A. E. Surkus, M. Bauer, M. M. Pohl, J. Radnik, M. Beller, *Nat. Protoc.*, 2015, **10**, 916.
- (6) T. Yasukawa, X. Yang, S. Kobayashi, Org. Lett., 2018, 20, 5172-5176.
- (7) H. Su, K. X. Zhang, B. Zhang, H. H. Wang, Q. Y. Yu, X. H. Li, J. S. Chen, J. Am. Chem.

*Soc.*, 2017, **139**, 811-818.

(8) D. Nandan, G. Zoppellaro, I. Medřík, C. Aparicio, P. Kumar, M. Petr, R. Zbořil, *Green chem.*, 2018, **20**, 3542-3556.

(9) W. Zhong, H. Liu, C. Bai, S. Liao, Y. Li, ACS Catal., 2015, 5, 1850-1856.

(10) Q. Xiao, Z. Liu, A. Bo, S. Zavahir, S. Sarina, S. Bottle, H. Zhu, J. Am. Chem. Soc.,
2015, 137, 1956-1966.