Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

3d-4f metallacrown complexes with new sandwich core: synthesis,

structures and single molecule magnet behavior

Wen-Wen Chang, Hua Yang, Hai-Quan Tian, Da-Cheng Li* and Jian-Min Dou

Table of contents

1: Crystal Data and Structure	
2: Magnetic Measurements	

1: Crystal Data and Structure.

	complex		1		2		
	Chemical forn	nula	C ₃₃ H ₁₂₀ Cl ₃ Cu ₈ E	rN ₁₆ O ₄₃	C ₃₃ H ₁₂₀ Cl ₃ Cu ₈	₃ N ₁₆ O ₄₃ Yb	
	CCDC numb	umber 2009454			200	9455	
	M, g mol -	-1 2211.37			221	7.15	
	Crystal syste	m	monoclinic		monoclinic		
	a /Å		11.3758(8)		11.3776(3)		
	b/Å		20.6667(1	1)	20.6	630(6)	
	c/Å		18.5033(1	0)	18.5	000(5)	
	2Unit cell volur	ne/Å ³	4330.8(4)	432	8.1(2)	
	Temperature	/K	132(4)		130)(11)	
	Space group	р	P2(1)		PZ	2(1)	
	Z		2			2	
	Rint		0.0564		0.0	0686	
	R1 a (I $> 2\sigma$ (I))	0.1126		0.1	161	
	wR2 b (all da	ita)	0.3464	0	0.3	3049	
	Table S2	. Selec	ted bond lengths (A	A) and ang	gles (deg) for co	mplex 1.	
Er1-O	1	2.30(2)	01-Er1-0	03	68.9(7)	
Er1-O	3	2.342	(18)	01-Er1-0	05	107.5(7)	
Er1-O	5	2.36(2	2)	01-Er1-0	D7	68.6(7)	
Er1-O'	7	2.283	(17)	01-Er1-0	09	87.0(7)	
Er1-O	9	2.315	(19)	01-Er1-0	D11	82.5(7)	
Er1-O	11	2.308	(19)	01-Er1-0	D13	140.8(7)	
Er1-O	13	2.316	(18)	01-Er1-0	D15	146.9(7)	
Er1-O	15	2.312	(19)	O3-Er1-0	05	69.4(6)	
Cu1-O	2	1.910	(19)	O3-Er1-0	D7	106.4(6)	
Cu1-N	3	1.96(2	2)	O3-Er1-0	C 9	82.4(6)	
Cu1-N	4	2.01(2)	O1-Cu1-	O2	82.1(8)	
Cu2-O	03	1.895	(19)	O1-Cu1-	O3	63.1(7)	
Cu2-O	94	1.982	(19)	O1-Cu1-	N3	89.5(9)	
Cu2-N	5	1.96(2	2)	O1-Cu1-	N4	171.8(9)	
Cu2-N	6	2.01(2	2)	O2-Cu1-	O3	144.7(7)	
Cu3-O	95	1.871	(18)	O2-Cu1-	N3	170.7(9)	
Cu3-O	6	1.98(2	2)	O2-Cu1-	N4	94.7(9)	
Cu3-N	7	1.92(2)	O3-Cu1-	N3	26.5(8)	
Cu3-N	8	2.04(2)	O3-Cu1-	N4	120.6(8)	
Table S3. Selected bond lengths (Å) and angles (deg) for complex 2.							
Yb1-O	01	2.310	(16)	O1-Yb1-	03	69.7(5)	
Yb1-O	03	2.328	(14)	O1-Yb1-	05	108.2(5)	
Yb1-O	07	2.293	(13)	O1-Yb1-	07	70.1(5)	
Yb1-O	19	2.313	(13)	O1-Yb1-	09	85.0(5)	

 Table S1. Crystal data and structure refinement for 1-2

Yb1-O11	2.256(15)	O1-Yb1-O11	81.5(5)
Yb1-O13	2.315(14)	O1-Yb1-O13	141.9(5)
Yb1-O15	2.319(14)	O1-Yb1-O15	146.3(5)
Cu1-O2	1.932(16)	O3-Yb1-O5	69.7(5)
Cu1-N3	1.927(18)	O3-Yb1-O7	107.3(5)
Cu1-N4	1.99(2)	O3-Yb1-O9	81.5(5)
Cu4-N1	1.932(17)	O3-Yb1-O11	140.8(5)
Cu4-N2	1.981(19)	O3-Yb1-O13	146.1(5)
Cu5-O9	1.895(15)	O1-Cu1-O2	81.1(7)
Cu5-O10	1.955(14)	O1-Cu1-O3	64.3(6)
Cu5-N11	1.955(15)	O1-Cu1-N3	90.7(7)
Cu5-N12	1.97(2)	O1-Cu1-N4	172.4(8)
Cu6-O11	1.921(15)	O2-Cu1-O3	144.9(5)
Cu6-N13	1.914(17)	O2-Cu1-N3	170.9(7)
O13-Yb1-O15	69.4(5)	O2-Cu1-N4	95.3(8)

Figure S1. Powder XRD comparison for complexes 1-2 against that calculated from crystal data

Figure S2. Thermogravimetric analysis of complexes 1-2 (from Left to right)

Figure. S3. The 1D chain established by cross-coordinated MC units for 1.

Figure. S4. The 2D network established by cross-coordinated MC units for 1.

Figure. S5. The structure of complex 2 with hydrogen atoms omitted for clarity

Figure. S6. The 1D network established by cross-coordinated MC units for 2 with extra hydrogen

atoms omitted for clarity

2: Magnetic Measurements.

Figure. S7. The plots of reduced magnetization M/N μ_B vs H/T at the indicated applied fields for

Figure. S8. Temperature-dependent ac susceptibilities under an applied dc field of 0 Oe for

complex 1

Figure. S9. Temperature-dependent ac susceptibilities under an applied dc field of 1000 Oe for

Figure. S10. Temperature-dependent ac susceptibilities under an applied dc field of 0 Oe for

Figure. S11. Plots of $ln(\chi''/\chi')$ vs. 1/T for complex 1

Table S4. The energy barrier (ΔE_{eff}) and relaxation time (τ_0) calculated through Debye equation: $\ln (\chi'' \chi') = \ln(\omega \tau_0) + \Delta E_{eff} / k_B T.$

Figure S12. Ac-scan field data of (2) at 999 Hz and 2.0 K

Table S5. Relaxation distribution and times fitted from Cole-Cole data for 2.

T(K)	α	τ (s)
2.0	0.1795	0.706580E-03
2.5	0.0978	0.421521E-03

3.0	0.0977	0.262797E-03
3.5	0.0404	0.178541E-03
4.0	0.0033	0.128895E-03
4.5	0.0011	0.946765E-04
5	0.555328E-16	0.692182E-04

Table S6. List of AC magnetic susceptibility measurement parameters of the reported discrete

Complex ^a	Energy barrier	$\tau_0(s)$	Ref	Entry
[CuL ^A Dy(NO ₃) ₃]	53K	6(5)×10 ⁻⁹	54	1
$[Cu_4Dy_2(OH)_2(NO_3)_8\{(py)_2CO_2\}_2(MeCN)_4]$	20.1(2) K	8.3(1)×10-9	55	2
[Dy ₃ Cu ₂ -(L ^B) ₄ (MeOH)]ClO ₄	7.7K	2.6×10 ⁻⁵	56	3
$[Dy_2Cu_4(L^B)_4](ClO_4)_2$	10.65K	2.5×10 ⁻⁷	56	4
[CuL ^c Dy(NO ₃) ₃]	15.72K	1.70×10-7	57	5
$[CuL^{D} Dy(H_{2}O)(NO_{3})_{3}]$	122(1)K	9.9(1)×10 ⁻⁷	58	6
$[Na_2Yb\{Cu_4(butyrat)_4\}_2]$	6.84K	1.04×10-5	This work	8

 H_2L^A : (H2L = N- α -methylsalicylidene-N'-3-methoxysalicylidene-1,3-propanediamine).

 $H_4L^B: 2,2'-\{2\text{-hydroxy-}3\text{-}[(2\text{-hydroxyphenylimino})\text{methyl}]\text{-}5\text{-methylbenzylazanediyl}\} diethanol.$

 $H_2L^C: (R,\!R)\text{-}N,\!N'\text{-}bis(3\text{-}methoxysalicylidene) cyclohexane-1,2\text{-}diamine$

H₂L^D: 1,3-bis(3-ethoxysalicylideneamino)-2-hydroxypropane