Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

New Journal of Chemistry

Dramatic Luminescence Signal from a Co(II) based Metal Organic Compound due to Construction of Charge Transfer Bands with Al³⁺ and Fe³⁺ ions in Water: Steady Sate and Time Resolved Spectroscopic Studies

Pooja Daga,^a Prakash Majee,^a Debal Kanti Singha,^{a,b} Priyanka Manna,^b Sayani Hui,^b Ananta

Kumar Ghosh,^c Partha Mahata^{b*} and Sudip Kumar Mondal^{a*}

^aDepartment of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India. Email: sudip.mondal@visva-bharati.ac.in

^bDepartment of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India. Email: <u>parthachem@gmail.com</u>

^cDepartment of Chemistry, Burdwan Raj College, Burdwan, Burdwan-713104, West Bengal, India

ELECTRONIC SUPPLEMENTARY INFORMATION

^{*} Corresponding Authors, E-mail: <u>sudip.mondal@visva-bharati.ac.in</u>, <u>parthachem@gmail.com</u>

Fig. S1. Powder XRD (CuK α) patterns of [Co(bpds)(bdc)(H₂O)₂].bpds, 1: (a) simulated from single crystal X-ray data, (b) experimental.

Fig. S2. Thermogravimetric analysis (TGA) data of $[Co(bpds)(bdc)(H_2O)_2]$.bpds, **1**, in nitrogen atmosphere. The plot shows % weight loss of **1** with increase in temperature.

Fig. S3. IR spectrum of [Co(bpds)(bdc)(H₂O)₂].bpds, 1.

Fig. S4. Figure shows asymmetric unit in the structure of [Co(bpds)(bdc)(H₂O)₂].bpds, 1.

Fig. S5. Figure shows the octahedral coordination around Co^{2+} ion in $[Co(bpds)(bdc)(H_2O)_2]$.bpds, 1.

Bond	Distances, Å	Bond	Distances, Å
Co(01)-O(1)	2.0758(18)	Co(01)-O(3)#1	2.127(2)
Co(01)-O(1)#1	2.0759(19)	Co(01)-N(1)	2.185(2)
Co(01)-O(3)	2.127(2)	Co(01)-N(1)#1	2.185(2)

Table S1: Selected bond distances (Å) observed in [Co(bpds)(bdc)(H₂O)₂].bpds, 1.

Symmetry transformations used to generate equivalent atoms: #1 - x + 5/4, -y + 5/4, z

 Table S2:
 Selected bond angles observed in [Co(bpds)(bdc)(H₂O)₂].bpds, 1.

Angle	Amplitude (°)	Angle	Amplitude (°)
O(1)-Co(01)-O(1)#1	175.04(12)	O(3)-Co(01)-N(1)	177.88(10)
O(1)-Co(01)-O(3)	90.23(9)	O(3)#1-Co(01)-N(1)	86.76(10)
O(1)#1-Co(01)-O(3)	86.29(9)	O(1)-Co(01)-N(1)#1	94.01(9)
O(1)-Co(01)-O(3)#1	86.30(9)	O(1)#1-Co(01)-N(1)#1	89.33(8)
O(1)#1-Co(01)-O(3)#1	90.23(9)	O(3)-Co(01)-N(1)#1	86.76(10)
O(3)-Co(01)-O(3)#1	91.15(15)	O(3)#1-Co(01)-N(1)#1	177.88(10)
O(1)-Co(01)-N(1)	89.33(8)	N(1)-Co(01)-N(1)#1	95.34(13)
O(1)#1-Co(01)-N(1)	94.02(9)		

Symmetry transformations used to generate equivalent atoms: #1 - x + 5/4, -y + 5/4, z

Fig. S6. Figure shows the 4,4-network in [Co(bpds)(bdc)(H₂O)₂].bpds, 1.

Fig. S7. Figure shows the arrangement of non-bonded bpds in the inter-layer position of $[Co(bpds)(bdc)(H_2O)_2]$.bpds, 1.

Donor	- D - H. Å	HA. Å	DA. Å	D - HA. Degree
	,		,	,,
HAcceptor				
_				
O(3)H(3A)N(2) ^{#1}	0.77	2.11	2.8694(2)	166
			λ, ´	

1.92

2.6875(2)

157

 Table S3: Potential Hydrogen bonds (Å) observed in [Co(bpds)(bdc)(H₂O)₂].bpds, 1.

Symmetry operations used to generate equivalent atoms: #1 1-x,1/4+y,1/4+z

0.82

O(3)--H(3B)..O(2)^{Intra}

Fig. S8. UV-visible absorption spectra of 1 and the ligands (bpds and Na₂bdc).

Fig. S9. Emission spectra of bpds and Na₂bdc excited at 300 nm.

Fig. S10. Excitation and emission spectra of **1**. The excitation wavelength was chosen at 300 nm for emission spectra and for the excitation spectra, emission was fixed at 421 nm.

Fig. S11. Emission spectra of 1 dispersed in water upon incremental addition of Cu^{2+} solution ($\lambda_{ex} = 300$ nm). Final concentration of Cu^{2+} in the medium is indicated in the legend.

Fig. S12. Emission spectra of 1 dispersed in water upon incremental addition of Hg^{2+} solution ($\lambda_{ex} = 300$ nm). Final concentration of Hg^{2+} in the medium is indicated in the legend.

Fig. S13. Emission spectra of **1** dispersed in water upon incremental addition of Pb^{2+} solution ($\lambda_{ex} = 300$ nm). Final concentration of Pb^{2+} in the medium is indicated in the legend.

Fig. S14. Emission spectra of 1 dispersed in water upon incremental addition of Cr^{3+} solution ($\lambda_{ex} = 300$ nm). Final concentration of Cr^{3+} in the medium is indicated in the legend.

Fig. S15. Emission spectra of 1 dispersed in water upon incremental addition of Cd^{2+} solution ($\lambda_{ex} = 300$ nm). Final concentration of Cd^{2+} in the medium is indicated in the legend.

Fig. S16. Emission spectra of 1 dispersed in water upon incremental addition of Ni²⁺ solution ($\lambda_{ex} = 300$ nm). Final concentration of Ni²⁺ in the medium is indicated in the legend.

Fig. S17. Emission spectra of 1 dispersed in water upon incremental addition of Co^{2+} solution ($\lambda_{ex} = 300 \text{ nm}$). Final concentration of Co^{2+} in the medium is indicated in the legend.

Fig. S18. Emission spectra of 1 dispersed in water upon incremental addition of Zn^{2+} solution ($\lambda_{ex} = 300$ nm). Final concentration of Zn^{2+} in the medium is indicated in the legend.

Fig. S19. Emission spectra of 1 dispersed in water upon incremental addition of Fe^{2+} solution ($\lambda_{ex} = 300$ nm). Final concentration of Fe^{2+} in the medium is indicated in the legend.

Fig. S20. Emission spectra of 1 dispersed in water upon incremental addition of Mn^{2+} solution ($\lambda_{ex} = 300$ nm). Final concentration of Mn^{2+} in the medium is indicated in the legend.

Fig. S21. Emission spectra of 1 dispersed in water upon incremental addition of Na⁺ solution ($\lambda_{ex} = 300$ nm). Final concentration of Na⁺ in the medium is indicated in the legend.

Fig. S22. Emission spectra of 1 dispersed in water upon incremental addition of K⁺ solution ($\lambda_{ex} = 300$ nm). Final concentration of K⁺ in the medium is indicated in the legend.

Fig. S23. Emission spectra of 1 dispersed in water upon incremental addition of Mg²⁺ solution ($\lambda_{ex} = 300$ nm). Final concentration of Mg²⁺ in the medium is indicated in the legend.

Fig. S24. Change in quenching percentage based on the emission of 1 (at 421 nm) with 12.5 μ M of different metal ions. The colour bars are the data points for 1 in presence of the indicated metal ions.

Fig. S25. Powder XRD patterns of 1, (a) simulated from single crystal X-ray data, (b) after immersing in aqueous solution of Al^{3+} ions and (c) after immersing in aqueous solution of Fe^{3+} ions.

Fig. S26. Absorption spectra of 1 dispersed in water upon incremental addition of Fe^{3+} solution. Final concentration of Fe^{3+} in the medium is indicated in the legend.

Fig. S27. (a) Absorption spectra of **1** dispersed in water and pyrene in heptane (b) luminescence spectra of pyrene in heptane upon excitation at 300 nm (c) luminescence spectra of **1** dispersed in water upon excitation at 300 nm.

Determination of quantum yield:

$$\boldsymbol{\phi}_{f}^{i} = \frac{F^{i} f_{s} n_{i}^{2}}{F^{s} f_{i} n_{s}^{2}} \boldsymbol{\phi}_{f}^{s}$$

where ϕ_f^i and ϕ_f^s are the fluorescence QYs of the sample and that of the standard, respectively; F^i and F^s are the integrated intensities (areas) of sample and standard spectra, respectively; f_s and f_i are the absorbance factor of standard and sample, respectively; the refractive indices of the sample and reference solution are n_i and n_s , respectively.

$$\phi_f^i = \frac{49453 \times 0.0365 \times 1.33^2}{51744 \times 0.0304 \times 1.38^2} \times 0.3$$
$$\phi_f^i = 0.32$$

Fig. S28. Plot of $[(I_0/I)-1)]$ of 1 vs. concentration of analytes having concentration range of analytes up to 12.5 μ M.

Fig. S29. Change in the Luminescence intensity of **1** in aqueous solution as a function of Al³⁺ concentration.

Fig. S30. Change in the Luminescence intensity of 1 in aqueous solution as a function of Fe^{3+} concentration.

Blank Reading (only 1)	Fluorescence Intensities at 421 nm (X)	Mean (x)	Standard Deviation (σ) = $\sqrt{\frac{\sum X-x ^2}{N}}$
Reading 1	635.2	638.38	3.954
Reading 2	638.8		
Reading 3	636.1		
Reading 4	635.9		
Reading 5	645.9		

Table S4: Calculation of standard deviation and Limit of Detection (LOD) for Al³⁺ and Fe³⁺:

Slope, m for $Al^{3+} = 33.70$

Slope, m for $Fe^{3+} = 46.12$

LOD for $Al^{3+} = 3\sigma/m = (3 \times 3.954)/33.70 = 0.35 \ \mu M = 8.44 \ ppb$

LOD for Fe³⁺ = $3\sigma/m = (3 \times 3.954)/46.12 = 0.25 \ \mu\text{M} = 13.59 \text{ ppb}$

where, σ is the standard deviation and *m* is the slope of the plot of Luminescence Intensity *vs.* Concentration of analyte.

Fig. S31. Plot of luminescence intensity ratio of 1 *vs.* concentration of analytes. I_0 and I are luminescence intensity in absence and presence of analytes, respectively. The slopes indicate the K_{SV} value. The red lines are the best fitted lines to the experimental data.

Fig. S32. (A) Emission spectra of **1** dispersed in aqueous solution upon the sequential addition of different metal ions followed by Al^{3+} solution ($\lambda_{ex} = 300$ nm). (B) Bar diagram showing the luminescence intensity (monitored at 421 nm) after the sequential addition of other metal ions and Al^{3+} ion. The composition and concentration of the system were as follows: (a) **1** in aqueous solution, (b) a + 2.5 μ M Cu²⁺, (c) b + 2.5 μ M Hg²⁺, (d) c + 2.5 μ M Pb²⁺, (e) d + 2.5 μ M Cr³⁺, (f) e + 2.5 μ M Cd²⁺, (g) f + 2.5 μ M Ni²⁺, (h) g + 2.5 μ M Co²⁺, (i) h + 2.5 μ M Zn²⁺, (j) i + 2.5 μ M Re²⁺, (k) j + 2.5 μ M Mn²⁺, (l) k + 2.5 μ M Na⁺ (m) l + 2.5 μ M K⁺, (n) m + 2.5 μ M Mg²⁺, (o) n + 1.25 μ M Al³⁺, (p) n + 2.5 μ M Al³⁺, (q) n + 3.75 μ M Al³⁺, (r) n + 5 μ M Al³⁺, (s) n + 6.25 μ M Al³⁺, (t) n + 7.5 μ M Al³⁺, (u) n + 8.25 μ M Al³⁺, (v) n + 10 μ M Al³⁺, (w) n + 11.25 μ M Al³⁺ and (x) n + 12.5 μ M Al³⁺.

Fig. S33. (A) Emission spectra of **1** dispersed in aqueous solution upon the sequential addition of different metal ions followed by Fe³⁺ solution ($\lambda_{ex} = 300$ nm). (B) Bar diagram showing the luminescence intensity (monitored at 421 nm) after the sequential addition of the other metal ions and Fe³⁺ ion. The composition and concentration of the system were as follows: (a) **1** in aqueous solution, (b) a + 2.5 μ M Cu²⁺, (c) b + 2.5 μ M Hg²⁺, (d) c + 2.5 μ M Pb²⁺, (e) d + 2.5 μ M Cr³⁺, (f) e + 2.5 μ M Cd²⁺, (g) f + 2.5 μ M Ni²⁺, (h) g + 2.5 μ M Co²⁺, (i) h + 2.5 μ M Zn²⁺, (j) i + 2.5 μ M Fe³⁺, (l) k + 2.5 μ M Na⁺ (m) 1 + 2.5 μ M K⁺, (n) m + 2.5 μ M Mg²⁺, (o) n + 1.25 μ M Fe³⁺, (p) n + 2.5 μ M Fe³⁺, (q) n + 3.75 μ M Fe³⁺, (r) n + 5 μ M Fe³⁺, (s) n + 6.25 μ M Fe³⁺, (t) n + 7.5 μ M Fe³⁺, (u) n + 8.25 μ M Fe³⁺, (v) n + 10 μ M Fe³⁺, (w) n + 11.25 μ M Fe³⁺ and (x) n + 12.5 μ M Fe³⁺.

Fig. S34. (A) Emission spectra of 1 dispersed in aqueous solution upon the sequential addition of different anions followed by AI^{3+} solution ($\lambda_{ex} = 300$ nm). (B) Bar diagram showing the luminescence intensity (monitored at 421 nm) after the sequential addition of the other anions and AI^{3+} ion. The composition and concentration of the system were as follows: (a) 1 in aqueous solution, (b) a + 2.5 μ M Cl⁻, (c) b + 2.5 μ M F⁻, (d) c + 2.5 μ M Br⁻, (e) d + 2.5 μ M I⁻, (f) e + 2.5 μ M CO₃²⁻, (g) f + 2.5 μ M NO₂⁻, (h) g + 2.5 μ M NO₃⁻, (i) h + 2.5 μ M SO₄²⁻, (j) i + 1.25 μ M Al³⁺, (k) i + 2.5 μ M Al³⁺, (l) i + 3.75 μ M Al³⁺ (m) i + 5 μ M Al³⁺, (n) i + 6.25 μ M Al³⁺, (o) i + 7.5 μ M Al³⁺, (p) i + 8.25 μ M Al³⁺, (q) i + 10 μ M Al³⁺, (r) i + 11.25 μ M Al³⁺ and (s) i + 12.5 μ M Al³⁺.

Fig. S35. (A) Emission spectra of 1 dispersed in aqueous solution upon the sequential addition of different anions followed by Fe³⁺ solution ($\lambda_{ex} = 300$ nm). (B) Bar diagram showing the luminescence intensity (monitored at 421 nm) after the sequential addition of the other anions and Fe³⁺ ion. The composition and concentration of the system were as follows: (a) 1 in aqueous solution, (b) a + 2.5 μ M Cl⁻, (c) b + 2.5 μ M F⁻, (d) c + 2.5 μ M Br⁻, (e) d + 2.5 μ M F, (f) e + 2.5 μ M CO₃²⁻, (g) f + 2.5 μ M NO₂⁻, (h) g + 2.5 μ M NO₃⁻, (i) h + 2.5 μ M SO₄²⁻, (j) i + 1.25 μ M Fe³⁺, (k) i + 2.5 μ M Fe³⁺, (l) i + 3.75 μ M Fe³⁺, (m) i + 5 μ M Fe³⁺, (n) i + 6.25 μ M Fe³⁺, (o) i + 7.5 μ M Fe³⁺, (p) i + 8.25 μ M Fe³⁺, (q) i + 10 μ M Fe³⁺, (r) i + 11.25 μ M Fe³⁺ and (s) i + 12.5 μ M Fe³⁺.

Fig. S36. (A) The emission spectra of **1** in double-distilled water and in water sample. (B) Stern-Volmer plot of luminescence intensity ratio (I_0/I) of **1** monitored at 380 nm *vs* concentration of Al^{3+} ion. I_0 and I represent the luminescence intensity of **1** in absence and presence of Al^{3+} ions, respectively. The green point denotes I_0/I ratio for **1** in water sample. The concentration of Al^{3+} in water sample is determined to be 2.8 μ M.

Fig. S37. (A) The emission spectra of 1 in double-distilled water and in water sample. (B) Stern-Volmer plot of luminescence intensity ratio (I_0/I) of 1 monitored at 421 nm *vs* concentration of Fe³⁺ ion. I_0 and I represent the luminescence intensity of 1 in absence and presence of Fe³⁺ ions, respectively. The green point denotes I_0/I ratio for 1 in water sample. The concentration of Fe³⁺ in water sample is determined to be 5.2 μ M.