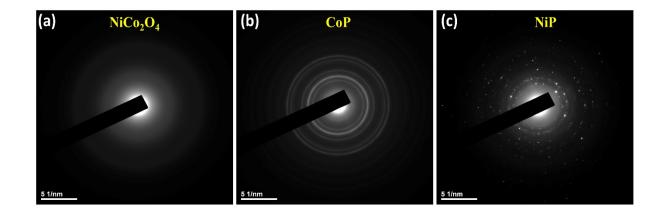
One-step electrodeposition of nickel phosphide for enhanced supercapacitive performance using 3-mercaptopropionic acid

Venkata Thulasivarma Chebrolu, ^a Balamuralitharan Balakrishnan, ^b Aravindha Raja Selvaraj,

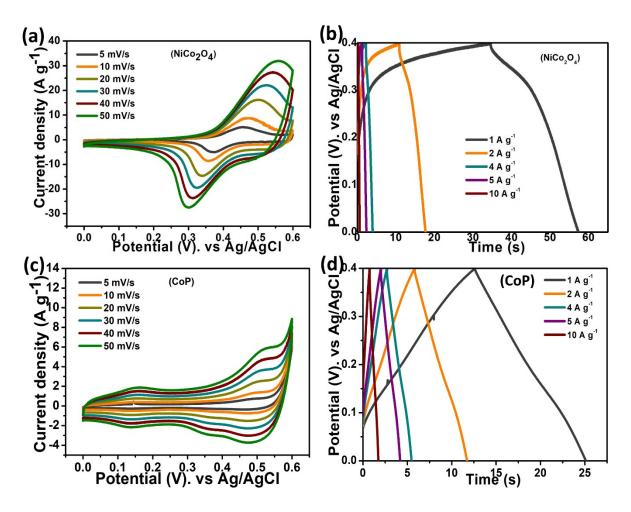
^a Inho Cho, ^a Jin-Soo Bak, ^a Hee-Je Kim, ^a*

Department of Electrical Engineering, Pusan National University, Gumjeong-Ku, Jangjeong-


Dong, Busan 46241, Republic of Korea.

Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr.

Sagunthala R&D Institute of Science and Technology, Chennai – 600062, Tamil Nadu, India.


†Electronic supplementary information (ESI) available:

*Corresponding author. Tel: +82-10-2295-0613; fax: +82-51-5130212.

E-mail address: heeje@pusan.ac.kr

Fig. S1. Selected area electron diffraction (SAED) patterns of NiCo₂O₄, CoP, and NiP via electrodeposition technique.

Fig. S2. CV and GCD plot of nickel cobalt oxide (NiCo₂O₄) and cobalt phosphide (CoP) at different scan rates and current densities.

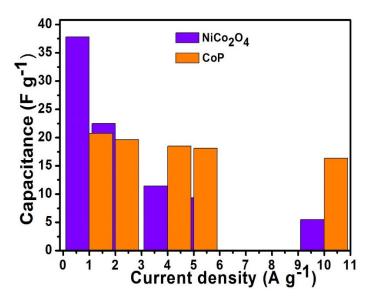


Fig. S3. $NiCo_2O_4$ and CoP specific capacitance vs current density of $NiCo_2O_4$ and CoP at various current densities.