Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information for

Naphthalimide-based fluorescent probe for highly sensitive and selective detection of nerve agent mimic DCP in solution and vapor phase

Hui Xu[†], Han Zhang[†], Lei Zhao, Cheng Peng, Guohua Liu, Tanyu Cheng*

Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai 200241, P. R. China. Tel.: +86 21 64321819. Email: <u>tycheng@shnu.edu.cn</u>

1. Determination of detection limit

Figure S1. Fluorometric determination of limit of DCP to probe 2 in DMF.

LOD = 3 Sb / m (Sb is the ratio signal and noise, m is the slope of the linearity)Slope = 8.19186 Standard Deviation = 0.015169 K=3 $LOD = K \times \text{Standard Deviation / Slope} = 3 \times 0.015169 / 8.19186 = 0.0055 \ \mu\text{M}=5.5\text{nm}$

2. The LOD of reported fluorescent probe for DCP

Probe	LOD	References
Et ₂ N O NH	0.065 µM	J. Hazard. Mater., 2018, 342, 10–19
	0.21 μM	J. Hazard. Mater., 2018, 342, 10–19
$ \begin{array}{c} & & \\ & & $	0.17 ppm	Chem.Commun., 2013, 49, 10474–10476
	25 ppm	Chem.Commun.,2011, 47, 11468–11470
R ₂ N OH	21 nM	J. Mater. Chem. C, 2017, 5, 73377343
$R_2 \xrightarrow{R_1}_{N}$	8 nm	ACS Sens. 2017, 2, 834–841
	21.9 nM	Chem. Eur.J. 2017, 23,7785 –7790
	0.142 μmol	Sensor. Actuators B Chem. 235 (2016) 447–456

С	0.71µg/L	Anal. Chem. 2016, 88, 9259–9263
	1.87 ppb	Sensor. Actuators B Chem. 255 (2018) 176–182
	3.36 µmol	Sensor. Actuators B Chem. 238 (2017) 145–149
OH N-OH	140 nM	Dyes and Pigments 170 (2019) 107585
C ₁₄ H ₂₉ O N O HN H ₂ N	88nm	Anal. Chem. 2019, 91, 12070–12076
	10.4nm	Anal. Chem. 2019, 91, 10979–10983
HN O H	9.6nm	Dyes and Pigments 171 (2019) 107712
	5.5 nM	This work

Table S1. The LOD of reported fluorescent probe for DCP

3. HCl effect

Figure S2. The fluorescence intensity of probe **2** (10.0 μ M) at 510 nm in the presence and absence of DCP in DMF: H₂O 1:1 v/v (10.0 μ M) under different pH (3.0-12.0)

Figure S3. (a) Absorption and (b) emission spectra of probe 2 (10 μ M) in the presence of DCP (50.0 μ M) or HCl (50.0 μ M) in DMF.

4. Kinetic study

Fig. S4. Kinetic profile of the reaction between probe 2 and DCP in DMF

5. Fluorescence images of above solutions

Fig. S5. Photographs of probe 2 in DMF with different amounts of DCP after a 5 min incubation under

UV light (365 nm).

6. Quantum yield

$$\boldsymbol{\Phi}_{I} = \frac{\boldsymbol{\Phi}_{B}\boldsymbol{I}_{I}\boldsymbol{A}_{B}\boldsymbol{\lambda}_{\mathsf{exB}}\boldsymbol{\eta}_{I}}{\boldsymbol{I}_{B}\boldsymbol{A}_{I}\boldsymbol{\lambda}_{\mathsf{exI}}\boldsymbol{\eta}_{B}}$$

Where φ is quantum yield; I is integrated area under the corrected emission spectra; A is absorbance at the excitation wavelength; λ ex is the excitation wavelength; η is the refractive index of the solution; the subscripts 1 and B refer to the unknown and the standard, respectively. Fluorescence quantum yields were determined in solution, using Rhodamine B (Acid) in alcohol as a standard (Φ F = 0.49). Φ F=0.005 for probe 2 and Φ F=0.48 for probe 2@DCP.

7. Characterization NMR spectra of probe 2

MS spectrum of probe 2

1:MS ES+ 5.7e+007

NMR spectra of compound 3

HR-MS spectrum of compound 3

IR spectrum of compound 3

