Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

for the manuscript

Detection of Al³⁺ and Fe³⁺ ions by nitrobenzoxadiazole bearing pyridine-2,6dicarboxamiade based chemosensors: Effect of solvents on detection

Sudheer,[†] Vijay Kumar,[†] Pramod Kumar and Rajeev Gupta*

Department of Chemistry, University of Delhi, New Delhi 110007, India

Scheme S1. Preparative route for the synthesis of chemosesnsors L1 and L2.

Figure S2. FTIR spectrum of chemosensor L2.

Figure S3. ESI⁺-MS spectrum of chemosensor L1 recorded in MeOH.

Figure S4. ESI⁺-MS spectrum of chemosensor L2 recorded in MeOH.

Figure S5. ¹H NMR spectrum of chemosensor L1 recorded in DMSO-d₆.

Figure S6. ¹³C NMR spectrum of chemosensor L1 recorded in DMSO-d₆.

Figure S7. ¹H NMR spectrum of chemosensor L2 recorded in DMSO-d₆.

Figure S8. ¹³C NMR spectrum of chemosensor L2 recorded in DMSO-d₆.

Figure S9. B-H plots by the absorption spectral titration for the detection of Al^{3+} ion by chemosensors (a) L1 and (b) L2 in CH₃OH.

Figure S10. Determination of detection limits by the absorption spectral titration for the detection of Al^{3+} ion by chemosensors L1 and L2 in CH₃OH.

Figure S11. B-H plots by the absorption spectral titration for the detection of Al^{3+} and Fe^{3+} ions by chemosensors (a) L1 and (b) L2 in THF.

Figure S12. Determination of detection limits by the absorption spectral titration for the detection of Al^{3+} and Fe^{3+} ions by chemosensor L1 and L2 in THF.

Figure S13. B-H plots by the absorption spectral titration for the detection of Fe^{3+} ion by chemosensors (a) L1 and (b) L2 in HEPES buffer (10 mM, pH = 7.2).

Figure S14. Determination of detection limits by the absorption spectral titration for the detection of Fe^{3+} ion by chemosensor L1 and L2 in HEPES buffer (10 mM, pH = 7.2).

Figure S15. Change in the emission intensity with the number of equivalents (0–5 equivalents) of Al^{3+} ion for the chemosensors (a) L1 (b) L2 in CH₃OH.

Figure S16. Change in the emission intensity of chemosensors (a) L1 (20 μ M) and (b) L2 (20 μ M) with 2 equivalents of assorted metal ions in THF.

Figure S17. Change in the emission spectra of chemosensors L1 and L2 in THF: (a) L1 (20 μ M) with Al³⁺ ion (0-40 μ M); (b) L2 (20 μ M) with Al³⁺ ion (0-40 μ M); (c) L1 (20 μ M) with Fe³⁺ ion (0-40 μ M); (d) L2 (20 μ M) with Fe³⁺ ion (0-40 μ M).

Figure S18. Stern-Volmer plots by the emission spectral titration for the detection of Al^{3+} and Fe³⁺ ions by the chemosensors (a) L1 and (b) L2 in THF.

Figure S19. B-H plots by the emission spectral titration for the detection of Al^{3+} and Fe^{3+} ions by the chemosensors (a) L1 and (b) L2 in THF.

Figure S20. Change in the absorption spectra of chemosensors (a_1-a_3) L1 and (b_1-b_3) L2 in different CH₃OH–H₂O combinations (100%, 50% and 0%) with Al³⁺ and Fe³⁺ ions.

Figure S21. Change in the emission spectra of chemosensors (a_1-a_3) L1 and (b_1-b_3) L2 in different CH₃OH–H₂O combinations (100%, 50% and 0%) with Al³⁺ and Fe³⁺ ions. λ_{ex} = 370 nm in CH₃OH; λ_{ex} = 360 nm in CH₃OH–H₂O (1:1, v/v); λ_{ex} = 360 nm in H₂O.

Figure S22. Change in the emission spectra of chemosensors (a) L1 and (b) L2 in the presence of Al³⁺ and Fe³⁺ ions in CH₃CN ($\lambda_{ex} = 450$ nm).

Figure S23. Effect of pH (3.0–12.0) on the emission intensity of chemosensor L1 at 525 nm in the aqueous medium. The black and red circles respectively display emission intensity of chemosensor L1 in the absence and presence of Fe^{3+} ion.

Figure S24. Effect of pH (3.0–12.0) on the emission intensity of chemosensor L2 at 525 nm in the aqueous medium. The black and red circles respectively display emission intensity of chemosensor L2 in the absence and presence of Fe^{3+} ion.

Figure S25. Absorbance outputs of chemosensor L2 at 464 nm in presence of chemical inputs viz. IN $1 = Al^{3+}$ and IN 2 = PPi (blue bars) and the corresponding two-input combinational logic circuit (Threshold value is 0.05).

Figure S26. Job's plots for the detection of Al^{3+} ion by the chemosensors (a) L1 and (b) L2 in CH₃OH.

Figure S27. Change in the absorption spectra of chemosensors (a) L1 and (b) L2 in presence of two equivalents of Al^{3+} ion in CH_3OH .

Figure S28. FTIR spectrum of isolated product $[L1-Al^{3+}]$ from a reaction of chemosensor L1 with Al^{3+} ion.

Figure S29. FTIR spectrum of isolated product $[L2-Al^{3+}]$ from a reaction of chemosensor L2 with Al^{3+} ion.

Figure S30. ESI⁺-MS spectrum of isolated [L1-Al³⁺] product in CH₃OH.

Figure S31. ESI⁺-MS spectrum of isolated [L2-Al³⁺] product in CH₃OH.

Figure S32. Change in the absorption spectra of chemosensors (a) L1 and (b) L2 in presence of two equivalents of Fe^{3+} ion in HEPES buffer.

Figure S33. FTIR spectrum of isolated product $[L1-Fe^{3+}]$ from a reaction of chemosensor L1 with Fe³⁺ ion.

Figure S34. FTIR spectrum of isolated product $[L2-Fe^{3+}]$ from a reaction of chemosensor L2 with Fe³⁺ ion.

Figure S35. ESI⁺-MS spectrum of isolated [L2-Fe³⁺] product in H_2O .

Figure S36. ESI⁺-MS spectrum of isolated [L2-F e^{3+}] product in H₂O.