Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

1	Supplementary Information
2	
3	Hydrothermal synthesis of NiFe2O4 nanoparticles as an efficient electro catalyst for the
4	electrochemical detection of bisphenol-A
5	
6	Kesavan Ganesh ^a , Nataraj Nandini ^a , Shen–Ming Chen ^{a*} , Li–Heng Lin ^a
7 8	^a Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
9	Corresponding Authors
10	E-mail: smchen78@ms15.hinet.net (S-M Chen),
11	Fax: +886 2270 25238; Tel: +886 2270 17147.
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	

30

Fig. S1: CV studies of the bare SPCE (a), and NFO/SPCE (b) in the 5 mM $[Ru(bpy)_3]^{2+}/0.1$ M KCl) with scan rate of 50 mVs⁻¹.

Fig. S2: DPV response peaks of different concentration of phenolic and rich polyphenolic interfering compounds on NFO/SPCE at 50 mVs⁻¹ in PBS (7.0)

T 11 01 D '	1	1 1 1 1 1	. •	•	• . 1	1	
Inhla VI · Provinio	1 3 7	nublichod	ronort in	comparison	with #	ronocad	concor
1 a b b c o 1. $1 b c v b b c$	IV	DUDHSHUU	ICDOIL III	COHIDALISOII	WILLI	JUDUSCU	SCHSUL
	-)	p					

Electrode	LOD (nM)	Linear range	Method	Reference	
		(µM)			
GNPs-MWCNTs-CS/GCE	0.05	0.1–100	DPV	1	

28

29

thionine-CB-SPE	200	0.5–50	i-t	2
Au-Cu@BSA-GNRs/GCE	4.0	2.0-0	SWASV *	3
MWCNT-PDDA-AuPd	60	0.18–18	DPV	4
MB-incubated	60	0.2 100	CUIV	5
SH-β-CD/NPGL/GE	00	0.3-100	5 W V	
AuNPs /CBNPs/SPCE	8.8	0.07–10	DPV	6
NEE O SPOE	6.0	0.02.12.5		Present
NIFE2U4/SPCE	0.0	0.02-12.3	Drv	work

GNPs–MWCNTs–CS/GCE: Graphene nanoplatelets (GNPs), multiwalled carbon nanotube (MWCNTs) and chitosan (CS) modified glassy carbon electrode; thionine–CB–SPE: laccase–thionine–carbon black-modified screen-printed electrode; Au-Cu@BSA-GNRs/GCE: Au-Cu bimetallic nanoclusters–bovine serum albumin–graphene nanoribbons modified glassy carbon electrode; MWCNT–PDDA–AuPd: Poly (diallyldimethylammonium chloride)–AuPd (gold palladium) bimetallic incorporated carboxylic multi-walled carbon nanotubes; MB–incubated SH– β –CD/NPGL/GE: gold leaf (NPGL) with thiolated beta-cyclodextrin (SH- β -CD); AuNPs /CBNPs/SPCE: Screen printed carbon electrode modified with molecularly imprinted polymer (US-MagMIP) and carbon black nanoparticles (CBNPs)

31

Sample	BPA concen	tration (µM)	Recovery (%)	RSD (%)	
	Added	Found			
Black tea	1.5	1.44	96.0	1.9	
	2.5	2.48	99.2	1.3	
	4.5	4.34	97.58	1.8	
	6	5.79	96.5	2.5	
Green tea	2	1.94	97	1.4	
	4	3.88	96.75	1.3	
	6.5	6.32	97.23	2.3	

Table S2: Determination of BPA in tea samples

			8	8.09	101.1	1.6
32						
33	Refer	rences				
34						
35 36	1	J. Zou, M. M and J. G. Yu,	. Yuan, Z. N. Huan Mater. Sci. Eng. C	g, X. Q. Chen, X. Y , 2019, 103 , 109848	^r . Jiang, F. P. Jiao, N 3.	N. Zhou, Z. Zhou
37 38	2	M. Cammarc Mita, <i>Electro</i>	ota, M. Lepore, M. F <i>ochim. Acta</i> , 2013, 1	Portaccio, D. Di Tuc 09, 340–347.	oro, F. Arduini, D. N	Moscone and D. G.
39 40	3	E. Mahmoud <i>J</i> ., 2019, 145	i, A. Hajian, M. Res , 242–251.	zaei, A. Afkhami, A	. Amine and H. Baş	gheri, Microchem.
41	4	F. Mo, J. Xie	, T. Wu, M. Liu, Y.	Zhang and S. Yao,	Food Chem., 2019	, 292 , 253–259.
42	5	R. Zhang, Y.	Zhang, X. Deng, S	. Sun and Y. Li, <i>Ele</i>	ectrochim. Acta, 201	8, 271 , 417–424.
43	6	N. Ben, A. A	it, C. Dridi and A. A	Amine, Sensors Act	uators B. Chem., 20	18, 276 , 304–312.

44